These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 36497285)
41. Noninvasive prediction of residual disease for advanced high-grade serous ovarian carcinoma by MRI-based radiomic-clinical nomogram. Li H; Zhang R; Li R; Xia W; Chen X; Zhang J; Cai S; Li Y; Zhao S; Qiang J; Peng W; Gu Y; Gao X Eur Radiol; 2021 Oct; 31(10):7855-7864. PubMed ID: 33864139 [TBL] [Abstract][Full Text] [Related]
42. Predictive value of magnetic resonance imaging radiomics-based machine learning for disease progression in patients with high-grade glioma. Li Z; Chen L; Song Y; Dai G; Duan L; Luo Y; Wang G; Xiao Q; Li G; Bai S Quant Imaging Med Surg; 2023 Jan; 13(1):224-236. PubMed ID: 36620140 [TBL] [Abstract][Full Text] [Related]
43. Differentiation of Benign From Malignant Parotid Gland Tumors Using Conventional MRI Based on Radiomics Nomogram. Qi J; Gao A; Ma X; Song Y; Zhao G; Bai J; Gao E; Zhao K; Wen B; Zhang Y; Cheng J Front Oncol; 2022; 12():937050. PubMed ID: 35898886 [TBL] [Abstract][Full Text] [Related]
44. Thin-Slice Magnetic Resonance Imaging-Based Radiomics Signature Predicts Chromosomal 1p/19q Co-deletion Status in Grade II and III Gliomas. Kong Z; Jiang C; Zhang Y; Liu S; Liu D; Liu Z; Chen W; Liu P; Yang T; Lyu Y; Zhao D; You H; Wang Y; Ma W; Feng F Front Neurol; 2020; 11():551771. PubMed ID: 33192984 [No Abstract] [Full Text] [Related]
45. Development and Validation of a Model Using Radiomics Features from an Apparent Diffusion Coefficient Map to Diagnose Local Tumor Recurrence in Patients Treated for Head and Neck Squamous Cell Carcinoma. Kim M; Lee JH; Joo L; Jeong B; Kim S; Ham S; Yun J; Kim N; Chung SR; Choi YJ; Baek JH; Lee JY; Kim JH Korean J Radiol; 2022 Nov; 23(11):1078-1088. PubMed ID: 36126954 [TBL] [Abstract][Full Text] [Related]
46. Discriminating between benign and malignant salivary gland tumors using diffusion-weighted imaging and intravoxel incoherent motion at 3 Tesla. Zhang R; King AD; Wong LM; Bhatia KS; Qamar S; Mo FKF; Vlantis AC; Ai QYH Diagn Interv Imaging; 2023 Feb; 104(2):67-75. PubMed ID: 36096875 [TBL] [Abstract][Full Text] [Related]
47. T1-weighted images-based radiomics for structural lesions evaluation in patients with suspected axial spondyloarthritis. Zheng M; Zhu G; Chen D; Xiao Q; Lei T; Ye C; Pan C; Miao S; Ye L Radiol Med; 2023 Nov; 128(11):1398-1406. PubMed ID: 37731149 [TBL] [Abstract][Full Text] [Related]
48. Classification of pulmonary lesion based on multiparametric MRI: utility of radiomics and comparison of machine learning methods. Wang X; Wan Q; Chen H; Li Y; Li X Eur Radiol; 2020 Aug; 30(8):4595-4605. PubMed ID: 32222795 [TBL] [Abstract][Full Text] [Related]
49. A pilot study of radiomics signature based on biparametric MRI for preoperative prediction of extrathyroidal extension in papillary thyroid carcinoma. He J; Zhang H; Wang X; Sun Z; Ge Y; Wang K; Yu C; Deng Z; Feng J; Xu X; Hu S J Xray Sci Technol; 2021; 29(1):171-183. PubMed ID: 33325448 [TBL] [Abstract][Full Text] [Related]
50. MR-based radiomics-clinical nomogram in epithelial ovarian tumor prognosis prediction: tumor body texture analysis across various acquisition protocols. Wang T; Wang H; Wang Y; Liu X; Ling L; Zhang G; Yang G; Zhang H J Ovarian Res; 2022 Jan; 15(1):6. PubMed ID: 35022079 [TBL] [Abstract][Full Text] [Related]
51. A preliminary study using spinal MRI-based radiomics to predict high-risk cytogenetic abnormalities in multiple myeloma. Radiol Med; ; . PubMed ID: 34159496 [TBL] [Abstract][Full Text] [Related]