BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 36497374)

  • 21. Deep Learning Algorithm for Auto-Delineation of High-Risk Oropharyngeal Clinical Target Volumes With Built-In Dice Similarity Coefficient Parameter Optimization Function.
    Cardenas CE; McCarroll RE; Court LE; Elgohari BA; Elhalawani H; Fuller CD; Kamal MJ; Meheissen MAM; Mohamed ASR; Rao A; Williams B; Wong A; Yang J; Aristophanous M
    Int J Radiat Oncol Biol Phys; 2018 Jun; 101(2):468-478. PubMed ID: 29559291
    [TBL] [Abstract][Full Text] [Related]  

  • 22. ARPM-net: A novel CNN-based adversarial method with Markov random field enhancement for prostate and organs at risk segmentation in pelvic CT images.
    Zhang Z; Zhao T; Gay H; Zhang W; Sun B
    Med Phys; 2021 Jan; 48(1):227-237. PubMed ID: 33151620
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assessing Interobserver Variability in the Delineation of Structures in Radiation Oncology: A Systematic Review.
    Guzene L; Beddok A; Nioche C; Modzelewski R; Loiseau C; Salleron J; Thariat J
    Int J Radiat Oncol Biol Phys; 2023 Apr; 115(5):1047-1060. PubMed ID: 36423741
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impact of SSTR PET on Inter-Observer Variability of Target Delineation of Meningioma and the Possibility of Using Threshold-Based Segmentations in Radiation Oncology.
    Kriwanek F; Ulbrich L; Lechner W; Lütgendorf-Caucig C; Konrad S; Waldstein C; Herrmann H; Georg D; Widder J; Traub-Weidinger T; Rausch I
    Cancers (Basel); 2022 Sep; 14(18):. PubMed ID: 36139596
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Learning-based automatic segmentation of arteriovenous malformations on contrast CT images in brain stereotactic radiosurgery.
    Wang T; Lei Y; Tian S; Jiang X; Zhou J; Liu T; Dresser S; Curran WJ; Shu HK; Yang X
    Med Phys; 2019 Jul; 46(7):3133-3141. PubMed ID: 31050804
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deep learning-based GTV contouring modeling inter- and intra- observer variability in sarcomas.
    Marin T; Zhuo Y; Lahoud RM; Tian F; Ma X; Xing F; Moteabbed M; Liu X; Grogg K; Shusharina N; Woo J; Lim R; Ma C; Chen YE; El Fakhri G
    Radiother Oncol; 2022 Feb; 167():269-276. PubMed ID: 34808228
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pancreatic gross tumor volume contouring on computed tomography (CT) compared with magnetic resonance imaging (MRI): Results of an international contouring conference.
    Hall WA; Heerkens HD; Paulson ES; Meijer GJ; Kotte AN; Knechtges P; Parikh PJ; Bassetti MF; Lee P; Aitken KL; Palta M; Myrehaug S; Koay EJ; Portelance L; Ben-Josef E; Erickson BA
    Pract Radiat Oncol; 2018; 8(2):107-115. PubMed ID: 29426692
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fully Automated Segmentation of Globes for Volume Quantification in CT Images of Orbits using Deep Learning.
    Umapathy L; Winegar B; MacKinnon L; Hill M; Altbach MI; Miller JM; Bilgin A
    AJNR Am J Neuroradiol; 2020 Jun; 41(6):1061-1069. PubMed ID: 32439637
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interobserver variability in organ at risk delineation in head and neck cancer.
    van der Veen J; Gulyban A; Willems S; Maes F; Nuyts S
    Radiat Oncol; 2021 Jun; 16(1):120. PubMed ID: 34183040
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Boost delineation in breast radiation therapy: Isotropic versus anisotropic margin expansion.
    Verhoeven K; Peeters S; Erven K; Janssen H; Kindts I; Van Limbergen E; Laenen A; Petillion S; Weltens C
    Pract Radiat Oncol; 2016; 6(6):e243-e248. PubMed ID: 27686592
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reduction of inter-observer contouring variability in daily clinical practice through a retrospective, evidence-based intervention.
    Patrick HM; Souhami L; Kildea J
    Acta Oncol; 2021 Feb; 60(2):229-236. PubMed ID: 32988249
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluating diffusion-weighted magnetic resonance imaging for target volume delineation in head and neck radiotherapy.
    Cardoso M; Min M; Jameson M; Tang S; Rumley C; Fowler A; Estall V; Pogson E; Holloway L; Forstner D
    J Med Imaging Radiat Oncol; 2019 Jun; 63(3):399-407. PubMed ID: 30816646
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Attention-aware 3D U-Net convolutional neural network for knowledge-based planning 3D dose distribution prediction of head-and-neck cancer.
    Osman AFI; Tamam NM
    J Appl Clin Med Phys; 2022 Jul; 23(7):e13630. PubMed ID: 35533234
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Accuracy of automatic structure propagation for daily magnetic resonance image-guided head and neck radiotherapy.
    Christiansen RL; Johansen J; Zukauskaite R; Hansen CR; Bertelsen AS; Hansen O; Mahmood F; Brink C; Bernchou U
    Acta Oncol; 2021 May; 60(5):589-597. PubMed ID: 33688793
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Clinical feasibility of deep learning-based auto-segmentation of target volumes and organs-at-risk in breast cancer patients after breast-conserving surgery.
    Chung SY; Chang JS; Choi MS; Chang Y; Choi BS; Chun J; Keum KC; Kim JS; Kim YB
    Radiat Oncol; 2021 Feb; 16(1):44. PubMed ID: 33632248
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pelvic U-Net: multi-label semantic segmentation of pelvic organs at risk for radiation therapy anal cancer patients using a deeply supervised shuffle attention convolutional neural network.
    Lempart M; Nilsson MP; Scherman J; Gustafsson CJ; Nilsson M; Alkner S; Engleson J; Adrian G; Munck Af Rosenschöld P; Olsson LE
    Radiat Oncol; 2022 Jun; 17(1):114. PubMed ID: 35765038
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of a contour-alignment technique for CT-guided prostate radiotherapy: an intra- and interobserver study.
    Court LE; Dong L; Taylor N; Ballo M; Kitamura K; Lee AK; O'Daniel J; White RA; Cheung R; Kuban D
    Int J Radiat Oncol Biol Phys; 2004 Jun; 59(2):412-8. PubMed ID: 15145157
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Automatic multiorgan segmentation in thorax CT images using U-net-GAN.
    Dong X; Lei Y; Wang T; Thomas M; Tang L; Curran WJ; Liu T; Yang X
    Med Phys; 2019 May; 46(5):2157-2168. PubMed ID: 30810231
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Automatic segmentation of esophageal gross tumor volume in
    Yue Y; Li N; Zhang G; Zhu Z; Liu X; Song S; Ta D
    Comput Methods Programs Biomed; 2023 Feb; 229():107266. PubMed ID: 36470035
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deep Learning-Based Internal Target Volume (ITV) Prediction Using Cone-Beam CT Images in Lung Stereotactic Body Radiotherapy.
    Li Z; Zhang S; Zhang L; Li Y; Zheng X; Fu J; Qiu J
    Technol Cancer Res Treat; 2022; 21():15330338211073380. PubMed ID: 35188835
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.