These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 36497613)
1. Model-Based Biomechanical Exoskeleton Concept Optimization for a Representative Lifting Task in Logistics. Schiebl J; Tröster M; Idoudi W; Gneiting E; Spies L; Maufroy C; Schneider U; Bauernhansl T Int J Environ Res Public Health; 2022 Nov; 19(23):. PubMed ID: 36497613 [TBL] [Abstract][Full Text] [Related]
2. Model-Based Comparison of Passive and Active Assistance Designs in an Occupational Upper Limb Exoskeleton for Overhead Lifting. Zhou X; Zheng L IISE Trans Occup Ergon Hum Factors; 2021; 9(3-4):167-185. PubMed ID: 34254566 [TBL] [Abstract][Full Text] [Related]
3. The Exo4Work shoulder exoskeleton effectively reduces muscle and joint loading during simulated occupational tasks above shoulder height. van der Have A; Rossini M; Rodriguez-Guerrero C; Van Rossom S; Jonkers I Appl Ergon; 2022 Sep; 103():103800. PubMed ID: 35598416 [TBL] [Abstract][Full Text] [Related]
4. A Passive Back-Support Exoskeleton for Manual Materials Handling: Reduction of Low Back Loading and Metabolic Effort during Repetitive Lifting. Schmalz T; Colienne A; Bywater E; Fritzsche L; Gärtner C; Bellmann M; Reimer S; Ernst M IISE Trans Occup Ergon Hum Factors; 2022; 10(1):7-20. PubMed ID: 34763618 [TBL] [Abstract][Full Text] [Related]
5. Design and evaluation of the OmniSuit: A passive occupational exoskeleton for back and shoulder support. van Sluijs R; Scholtysik T; Brunner A; Kuoni L; Bee D; Kos M; Bartenbach V; Lambercy O Appl Ergon; 2024 Oct; 120():104332. PubMed ID: 38876001 [TBL] [Abstract][Full Text] [Related]
6. Biomechanical Model-Based Development of an Active Occupational Upper-Limb Exoskeleton to Support Healthcare Workers in the Surgery Waiting Room. Tröster M; Wagner D; Müller-Graf F; Maufroy C; Schneider U; Bauernhansl T Int J Environ Res Public Health; 2020 Jul; 17(14):. PubMed ID: 32708715 [TBL] [Abstract][Full Text] [Related]
7. Modulation of shoulder muscle and joint function using a powered upper-limb exoskeleton. Wu W; Fong J; Crocher V; Lee PVS; Oetomo D; Tan Y; Ackland DC J Biomech; 2018 Apr; 72():7-16. PubMed ID: 29506759 [TBL] [Abstract][Full Text] [Related]
8. A Novel Passive Shoulder Exoskeleton Using Link Chains and Magnetic Spring Joints. Lee HH; Yoon KT; Lim HH; Lee WK; Jung JH; Kim SB; Choi YM IEEE Trans Neural Syst Rehabil Eng; 2024; 32():708-717. PubMed ID: 38285587 [TBL] [Abstract][Full Text] [Related]
9. Biomechanical changes, acceptance, and usability of a passive shoulder exoskeleton in manual material handling. A field study. Schrøder Jakobsen L; de Zee M; Samani A; Desbrosses K; Madeleine P Appl Ergon; 2023 Nov; 113():104104. PubMed ID: 37531933 [TBL] [Abstract][Full Text] [Related]
10. In-Field Training of a Passive Back Exoskeleton Changes the Biomechanics of Logistic Workers. Schrøder Jakobsen L; Samani A; Desbrosses K; de Zee M; Madeleine P IISE Trans Occup Ergon Hum Factors; 2024; 12(3):149-161. PubMed ID: 38869954 [TBL] [Abstract][Full Text] [Related]
11. Biomechanical Analysis of Stoop and Free-Style Squat Lifting and Lowering with a Generic Back-Support Exoskeleton Model. Tröster M; Budde S; Maufroy C; Andersen MS; Rasmussen J; Schneider U; Bauernhansl T Int J Environ Res Public Health; 2022 Jul; 19(15):. PubMed ID: 35897411 [TBL] [Abstract][Full Text] [Related]
12. Effects of an exoskeleton on muscle activity in tasks requiring arm elevation: Part I - Experiments in a controlled laboratory setting. Mänttäri S; Rauttola AP; Halonen J; Karkulehto J; Säynäjäkangas P; Oksa J Work; 2024; 77(4):1179-1188. PubMed ID: 37980590 [TBL] [Abstract][Full Text] [Related]
13. Real-time lumbosacral joint loading estimation in exoskeleton-assisted lifting conditions via electromyography-driven musculoskeletal models. Moya-Esteban A; Durandau G; van der Kooij H; Sartori M J Biomech; 2023 Aug; 157():111727. PubMed ID: 37499430 [TBL] [Abstract][Full Text] [Related]
14. Biomechanical and Metabolic Effectiveness of an Industrial Exoskeleton for Overhead Work. Schmalz T; Schändlinger J; Schuler M; Bornmann J; Schirrmeister B; Kannenberg A; Ernst M Int J Environ Res Public Health; 2019 Nov; 16(23):. PubMed ID: 31795365 [TBL] [Abstract][Full Text] [Related]
15. A passive back exoskeleton supporting symmetric and asymmetric lifting in stoop and squat posture reduces trunk and hip extensor muscle activity and adjusts body posture - A laboratory study. Luger T; Bär M; Seibt R; Rimmele P; Rieger MA; Steinhilber B Appl Ergon; 2021 Nov; 97():103530. PubMed ID: 34280658 [TBL] [Abstract][Full Text] [Related]
16. Estimating lumbar spine loading when using back-support exoskeletons in lifting tasks. Madinei S; Nussbaum MA J Biomech; 2023 Jan; 147():111439. PubMed ID: 36638578 [TBL] [Abstract][Full Text] [Related]
17. Flexible sensor-based biomechanical evaluation of low-back exoskeleton use in lifting. Yin W; Chen Y; Reddy C; Zheng L; Mehta RK; Zhang X Ergonomics; 2024 Feb; 67(2):182-193. PubMed ID: 37204270 [TBL] [Abstract][Full Text] [Related]
18. Biomechanical evaluation of a new passive back support exoskeleton. Koopman AS; Näf M; Baltrusch SJ; Kingma I; Rodriguez-Guerrero C; Babič J; de Looze MP; van Dieën JH J Biomech; 2020 May; 105():109795. PubMed ID: 32423541 [TBL] [Abstract][Full Text] [Related]
19. Effectiveness of Soft versus Rigid Back-Support Exoskeletons during a Lifting Task. Schwartz M; Theurel J; Desbrosses K Int J Environ Res Public Health; 2021 Jul; 18(15):. PubMed ID: 34360352 [TBL] [Abstract][Full Text] [Related]
20. Effect of Expertise on Shoulder and Upper Limb Kinematics, Electromyography, and Estimated Muscle Forces During a Lifting Task. Goubault E; Martinez R; Assila N; Monga-Dubreuil É; Dowling-Medley J; Dal Maso F; Begon M Hum Factors; 2022 Aug; 64(5):800-819. PubMed ID: 33236930 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]