These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 36497770)

  • 1. Microseismic Dynamic Response and Multi-Source Warning during Rockburst Monitoring Based on Weight Decision Analysis.
    Tian J; Chen D; Liu Z; Sun W
    Int J Environ Res Public Health; 2022 Nov; 19(23):. PubMed ID: 36497770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microseismic energy distribution and impact risk analysis of complex heterogeneous spatial evolution of extra-thick layered strata.
    Lai X; Jia C; Cui F; Chen J; Zhou Y; Feng G; Gao Y
    Sci Rep; 2022 Jun; 12(1):10832. PubMed ID: 35760932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-Index Geophysical Monitoring and Early Warning for Rockburst in Coalmine: A Case Study.
    Liu X; Zhang S; Wang E; Zhang Z; Wang Y; Yang S
    Int J Environ Res Public Health; 2022 Dec; 20(1):. PubMed ID: 36612712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microseismic Precursors of Coal Mine Water Inrush Characterized by Different Waveforms Manifest as Dry to Wet Fracturing.
    Yu R; Qian J; Liu L; Zha H; Li N
    Int J Environ Res Public Health; 2022 Nov; 19(21):. PubMed ID: 36361176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of microseismic events in rock burst mines based on MEA-BP neural network.
    Lan T; Guo X; Zhang Z; Liu M
    Sci Rep; 2023 Jun; 13(1):9523. PubMed ID: 37308479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism and early warning of coal mine rockburst accident based on SD-STAMP-DEMATEL.
    Shi J; Wang S; Shao J
    Heliyon; 2024 Mar; 10(5):e26344. PubMed ID: 38439830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Research on rockburst prevention systems based on the attenuation law of coal and rock vibration wave energy.
    Rong H; Wang Z; Konicek P; Pan L; Tang G; Kajzar V; Wang Y
    Sci Rep; 2024 Mar; 14(1):6452. PubMed ID: 38499599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental Study on Calibration of Amplitude-Frequency Measurement Deviation for Microseismic Sensors in Coal Mines.
    Han Z; Dou L; Mu Z; Cao J; Chai Y; Chen S
    Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic P-Phase-Onset-Time-Picking Method of Microseismic Monitoring Signal of Underground Mine Based on Noise Reduction and Multiple Detection Indexes.
    Dai R; Wang Y; Zhang D; Ji H
    Entropy (Basel); 2023 Oct; 25(10):. PubMed ID: 37895572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rockburst disaster prediction of isolated coal pillar by electromagnetic radiation based on frictional effect.
    Zhao T; Yin Y; Xiao F; Tan Y; Zou J
    ScientificWorldJournal; 2014; 2014():814050. PubMed ID: 25054186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of coal's initial macro-cracks on rockburst tendency of rock-coal composite samples.
    Chen S; Yin D; Liu H; Chen B; Jiang N
    R Soc Open Sci; 2019 Nov; 6(11):181795. PubMed ID: 31827814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Research on prevention and control technology of classified rockburst in TBM construction of deeply buried tunnels.
    Yang Y; Du L; Li Q; Gong C; Song Y; Wang M
    Sci Rep; 2024 Jan; 14(1):333. PubMed ID: 38172618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine Learning Based Identification of Microseismic Signals Using Characteristic Parameters.
    Peng K; Tang Z; Dong L; Sun D
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of KNN-based isometric mapping and fuzzy c-means algorithm to predict short-term rockburst risk in deep underground projects.
    Kamran M; Ullah B; Ahmad M; Sabri MMS
    Front Public Health; 2022; 10():1023890. PubMed ID: 36339170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical study and application of energy extreme value discrimination method of softening zone for bursting hazard.
    Zhu X; Qi Q; Xiao Y
    Sci Prog; 2022; 105(4):368504221145865. PubMed ID: 36573794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intelligent prediction of rockburst in tunnels based on back propagation neural network integrated beetle antennae search algorithm.
    Li G; Xue Y; Qu C; Qiu D; Wang P; Liu Q
    Environ Sci Pollut Res Int; 2023 Mar; 30(12):33960-33973. PubMed ID: 36502473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical mechanism analysis of rockburst in deep-buried tunnel with high in-situ stress.
    Zhou C; Dong Z; Zhou C; Fu P; Luo S
    Sci Rep; 2024 Aug; 14(1):18076. PubMed ID: 39103442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of the evolution and control of fractures in surrounding rock under different pressure relief and support measures in mine roadways prone to rockburst events.
    He Y; Gao M; Xu D; Yu X
    R Soc Open Sci; 2021 Mar; 8(3):202044. PubMed ID: 34035938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive filtering of microseismic data for monitoring a water-conducting fractured zone in a mine.
    Li H; Han L; Dong D
    Sci Rep; 2022 Oct; 12(1):17448. PubMed ID: 36261473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microseismic comprehensive evaluation method for coal burst: a case study in the Zhaolou Coal Mine.
    Zhang H; Liang L; Lin N; Zhang S; Cui MM; Yang ZG
    Sci Rep; 2024 Jul; 14(1):15588. PubMed ID: 38971855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.