BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 36498878)

  • 1. Genome-Wide Identification and Expression Analysis of Fatty Acid Desaturase (
    Sun D; Quan W; Wang D; Cui J; Wang T; Lin M; Wang Y; Wang N; Dong Y; Li X; Liu W; Wang F
    Int J Mol Sci; 2022 Nov; 23(23):. PubMed ID: 36498878
    [No Abstract]   [Full Text] [Related]  

  • 2. Identification of three genes encoding microsomal oleate desaturases (FAD2) from the oilseed crop Camelina sativa.
    Kang J; Snapp AR; Lu C
    Plant Physiol Biochem; 2011 Feb; 49(2):223-9. PubMed ID: 21215650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polyploid genome of Camelina sativa revealed by isolation of fatty acid synthesis genes.
    Hutcheon C; Ditt RF; Beilstein M; Comai L; Schroeder J; Goldstein E; Shewmaker CK; Nguyen T; De Rocher J; Kiser J
    BMC Plant Biol; 2010 Oct; 10():233. PubMed ID: 20977772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Silico Analysis of Fatty Acid Desaturases Structures in
    Raboanatahiry N; Yin Y; Chen K; He J; Yu L; Li M
    Int J Mol Sci; 2021 Oct; 22(19):. PubMed ID: 34639198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing microRNA167A expression in seed decreases the α-linolenic acid content and increases seed size in Camelina sativa.
    Na G; Mu X; Grabowski P; Schmutz J; Lu C
    Plant J; 2019 Apr; 98(2):346-358. PubMed ID: 30604453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the Fatty Acid Desaturase Genes in Cucumber: Structure, Phylogeny, and Expression Patterns.
    Dong CJ; Cao N; Zhang ZG; Shang QM
    PLoS One; 2016; 11(3):e0149917. PubMed ID: 26938877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina sativa, using CRISPR/Cas9 gene editing.
    Jiang WZ; Henry IM; Lynagh PG; Comai L; Cahoon EB; Weeks DP
    Plant Biotechnol J; 2017 May; 15(5):648-657. PubMed ID: 27862889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strong co-suppression impedes an increase in polyunsaturated fatty acids in seeds overexpressing FAD2.
    Du C; Chen Y; Wang K; Yang Z; Zhao C; Jia Q; Taylor DC; Zhang M
    J Exp Bot; 2019 Feb; 70(3):985-994. PubMed ID: 30371807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving linolenic acid content in rapeseed oil by overexpression of
    Liu Y; Du Z; Li Y; Lu S; Tang S; Guo L
    Mol Breed; 2024 Feb; 44(2):9. PubMed ID: 38298744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Camelina seed transcriptome: a tool for meal and oil improvement and translational research.
    Nguyen HT; Silva JE; Podicheti R; Macrander J; Yang W; Nazarenus TJ; Nam JW; Jaworski JG; Lu C; Scheffler BE; Mockaitis K; Cahoon EB
    Plant Biotechnol J; 2013 Aug; 11(6):759-69. PubMed ID: 23551501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increasing Monounsaturated Fatty Acid Contents in Hexaploid
    Lee KR; Jeon I; Yu H; Kim SG; Kim HS; Ahn SJ; Lee J; Lee SK; Kim HU
    Front Plant Sci; 2021; 12():702930. PubMed ID: 34267775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutagenesis of the FAE1 genes significantly changes fatty acid composition in seeds of Camelina sativa.
    Ozseyhan ME; Kang J; Mu X; Lu C
    Plant Physiol Biochem; 2018 Feb; 123():1-7. PubMed ID: 29216494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective gene dosage by CRISPR-Cas9 genome editing in hexaploid Camelina sativa.
    Morineau C; Bellec Y; Tellier F; Gissot L; Kelemen Z; Nogué F; Faure JD
    Plant Biotechnol J; 2017 Jun; 15(6):729-739. PubMed ID: 27885771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and analysis of the FAD gene family in walnuts (Juglans regia L.) based on transcriptome data.
    Liu K; Zhao S; Wang S; Wang H; Zhang Z
    BMC Genomics; 2020 Apr; 21(1):299. PubMed ID: 32293267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physaria fendleri FAD3-1 overexpression increases ɑ-linolenic acid content in Camelina sativa seeds.
    Park ME; Choi HA; Kim HU
    Sci Rep; 2023 May; 13(1):7143. PubMed ID: 37130939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The coexpression of two desaturases provides an optimized reduction of saturates in camelina oil.
    Bengtsson JD; Wallis JG; Bai S; Browse J
    Plant Biotechnol J; 2023 Mar; 21(3):497-505. PubMed ID: 36382992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytomolecular analysis of mutants, breeding lines, and varieties of camelina (Camelina sativa L. Crantz).
    Kwiatek MT; Drozdowska Z; Kurasiak-Popowska D; Noweiska A; Nawracała J
    J Appl Genet; 2021 May; 62(2):199-205. PubMed ID: 33409934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systematic characterization of CsbZIP transcription factors in Camelina sativa and functional analysis of CsbZIP-A12 mediating regulation of unsaturated fatty acid-enriched oil biosynthesis.
    Gao H; Xue J; Yuan L; Sun Y; Song Y; Zhang C; Li R; Jia X
    Int J Biol Macromol; 2024 Jun; 270(Pt 1):132273. PubMed ID: 38734348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of an oleate 12-desaturase from Physaria fendleri and identification of 5'UTR introns in divergent FAD2 family genes.
    Lozinsky S; Yang H; Forseille L; Cook GR; Ramirez-Erosa I; Smith MA
    Plant Physiol Biochem; 2014 Feb; 75():114-22. PubMed ID: 24429134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mining and identification of polyunsaturated fatty acid synthesis genes active during camelina seed development using 454 pyrosequencing.
    Wang F; Chen H; Li X; Wang N; Wang T; Yang J; Guan L; Yao N; Du L; Wang Y; Liu X; Chen X; Wang Z; Dong Y; Li H
    BMC Plant Biol; 2015 Jun; 15():147. PubMed ID: 26084534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.