BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

440 related articles for article (PubMed ID: 36498908)

  • 1. Vascularization Strategies in 3D Cell Culture Models: From Scaffold-Free Models to 3D Bioprinting.
    Anthon SG; Valente KP
    Int J Mol Sci; 2022 Nov; 23(23):. PubMed ID: 36498908
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D-bioprinted all-inclusive bioanalytical platforms for cell studies.
    Mazrouei R; Velasco V; Esfandyarpour R
    Sci Rep; 2020 Sep; 10(1):14669. PubMed ID: 32887912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D Bioprinted Osteogenic Tissue Models for In Vitro Drug Screening.
    Breathwaite E; Weaver J; Odanga J; Dela Pena-Ponce M; Lee JB
    Molecules; 2020 Jul; 25(15):. PubMed ID: 32751124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Vitro Strategies to Vascularize 3D Physiologically Relevant Models.
    Dellaquila A; Le Bao C; Letourneur D; Simon-Yarza T
    Adv Sci (Weinh); 2021 Oct; 8(19):e2100798. PubMed ID: 34351702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing scaffold-free spheroid models: 3D cell bioprinting method for metastatic HSC3-Oral squamous carcinoma cell line.
    de Araújo TBS; Nogueira RLR; Siquara da Rocha LO; Bastos IN; Dias RB; Souza BSF; Lambert DW; Coletta RD; Silva VAO; Gurgel Rocha CA
    SLAS Discov; 2024 Jun; 29(4):100158. PubMed ID: 38852983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methodological aspects and pharmacological applications of three-dimensional cancer cell cultures and organoids.
    Foglietta F; Canaparo R; Muccioli G; Terreno E; Serpe L
    Life Sci; 2020 Aug; 254():117784. PubMed ID: 32416169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preclinical Testing Techniques: Paving the Way for New Oncology Screening Approaches.
    van Rijt A; Stefanek E; Valente K
    Cancers (Basel); 2023 Sep; 15(18):. PubMed ID: 37760435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D modeling of normal skin and cutaneous squamous cell carcinoma. A comparative study in 2D cultures, spheroids, and 3D bioprinted systems.
    Kurzyk A; Szumera-Ciećkiewicz A; Miłoszewska J; Chechlińska M
    Biofabrication; 2024 Feb; 16(2):. PubMed ID: 38377605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accelerating cardiovascular research: recent advances in translational 2D and 3D heart models.
    Mohr E; Thum T; Bär C
    Eur J Heart Fail; 2022 Oct; 24(10):1778-1791. PubMed ID: 35867781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comprehensive review on 3D tissue models: Biofabrication technologies and preclinical applications.
    Xie R; Pal V; Yu Y; Lu X; Gao M; Liang S; Huang M; Peng W; Ozbolat IT
    Biomaterials; 2024 Jan; 304():122408. PubMed ID: 38041911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent advances in microarray 3D bioprinting for high-throughput spheroid and tissue culture and analysis.
    Shrestha S; Lekkala VKR; Acharya P; Siddhpura D; Lee MY
    Essays Biochem; 2021 Aug; 65(3):481-489. PubMed ID: 34296737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D Engineering of Ocular Tissues for Disease Modeling and Drug Testing.
    Boutin ME; Hampton C; Quinn R; Ferrer M; Song MJ
    Adv Exp Med Biol; 2019; 1186():171-193. PubMed ID: 31654390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards using 3D cellular cultures to model the activation and diverse functions of macrophages.
    Cutter S; Wright MD; Reynolds NP; Binger KJ
    Biochem Soc Trans; 2023 Feb; 51(1):387-401. PubMed ID: 36744644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advances in tissue engineering of cancer microenvironment-from three-dimensional culture to three-dimensional printing.
    Marques JROF; González-Alva P; Yu-Tong Lin R; Ferreira Fernandes B; Chaurasia A; Dubey N
    SLAS Technol; 2023 Jun; 28(3):152-164. PubMed ID: 37019216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D Printing of Tissue Engineered Constructs for In Vitro Modeling of Disease Progression and Drug Screening.
    Vanderburgh J; Sterling JA; Guelcher SA
    Ann Biomed Eng; 2017 Jan; 45(1):164-179. PubMed ID: 27169894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell spheroids as a versatile research platform: formation mechanisms, high throughput production, characterization and applications.
    Decarli MC; Amaral R; Santos DPD; Tofani LB; Katayama E; Rezende RA; Silva JVLD; Swiech K; Suazo CAT; Mota C; Moroni L; Moraes ÂM
    Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33592595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic-Based Human Tissue 3D Cell Culture: A Systematic Review.
    Marques IA; Fernandes C; Tavares NT; Pires AS; Abrantes AM; Botelho MF
    Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strategies for 3D bioprinting of spheroids: A comprehensive review.
    Banerjee D; Singh YP; Datta P; Ozbolat V; O'Donnell A; Yeo M; Ozbolat IT
    Biomaterials; 2022 Dec; 291():121881. PubMed ID: 36335718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Bioprinted Liver-on-a-Chip for Drug Screening Applications.
    Knowlton S; Tasoglu S
    Trends Biotechnol; 2016 Sep; 34(9):681-682. PubMed ID: 27291461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional culture models: emerging platforms for screening the antitumoral efficacy of nanomedicines.
    Tofani LB; Luiz MT; Paes Dutra JA; Abriata JP; Chorilli M
    Nanomedicine (Lond); 2023 Mar; 18(7):633-647. PubMed ID: 37183804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.