BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 36499010)

  • 1. The Role of Reversible Phosphorylation of
    Smylla TK; Wagner K; Huber A
    Int J Mol Sci; 2022 Nov; 23(23):. PubMed ID: 36499010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visual arrestin interaction with clathrin adaptor AP-2 regulates photoreceptor survival in the vertebrate retina.
    Moaven H; Koike Y; Jao CC; Gurevich VV; Langen R; Chen J
    Proc Natl Acad Sci U S A; 2013 Jun; 110(23):9463-8. PubMed ID: 23690606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arrestin1 mediates light-dependent rhodopsin endocytosis and cell survival.
    Satoh AK; Ready DF
    Curr Biol; 2005 Oct; 15(19):1722-33. PubMed ID: 16213818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A molecular pathway for light-dependent photoreceptor apoptosis in Drosophila.
    Kiselev A; Socolich M; Vinós J; Hardy RW; Zuker CS; Ranganathan R
    Neuron; 2000 Oct; 28(1):139-52. PubMed ID: 11086990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of rhodopsin and arrestin phosphorylation in retinal degeneration of Drosophila.
    Kristaponyte I; Hong Y; Lu H; Shieh BH
    J Neurosci; 2012 Aug; 32(31):10758-66. PubMed ID: 22855823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metallophosphoesterase regulates light-induced rhodopsin endocytosis by promoting an association between arrestin and the adaptor protein AP2.
    Mu Y; Tian Y; Zhang ZC; Han J
    J Biol Chem; 2019 Aug; 294(35):12892-12900. PubMed ID: 31324721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arrestin with a single amino acid substitution quenches light-activated rhodopsin in a phosphorylation-independent fashion.
    Gray-Keller MP; Detwiler PB; Benovic JL; Gurevich VV
    Biochemistry; 1997 Jun; 36(23):7058-63. PubMed ID: 9188704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arrestin Facilitates Rhodopsin Dephosphorylation
    Hsieh CL; Yao Y; Gurevich VV; Chen J
    J Neurosci; 2022 Apr; 42(17):3537-3545. PubMed ID: 35332081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The formation of stable rhodopsin-arrestin complexes induces apoptosis and photoreceptor cell degeneration.
    Alloway PG; Howard L; Dolph PJ
    Neuron; 2000 Oct; 28(1):129-38. PubMed ID: 11086989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monomeric rhodopsin is sufficient for normal rhodopsin kinase (GRK1) phosphorylation and arrestin-1 binding.
    Bayburt TH; Vishnivetskiy SA; McLean MA; Morizumi T; Huang CC; Tesmer JJ; Ernst OP; Sligar SG; Gurevich VV
    J Biol Chem; 2011 Jan; 286(2):1420-8. PubMed ID: 20966068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A beta-arrestin binding determinant common to the second intracellular loops of rhodopsin family G protein-coupled receptors.
    Marion S; Oakley RH; Kim KM; Caron MG; Barak LS
    J Biol Chem; 2006 Feb; 281(5):2932-8. PubMed ID: 16319069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arrestin-Dependent and -Independent Internalization of G Protein-Coupled Receptors: Methods, Mechanisms, and Implications on Cell Signaling.
    Moo EV; van Senten JR; Bräuner-Osborne H; Møller TC
    Mol Pharmacol; 2021 Apr; 99(4):242-255. PubMed ID: 33472843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of arrestin binding by rhodopsin phosphorylation level.
    Vishnivetskiy SA; Raman D; Wei J; Kennedy MJ; Hurley JB; Gurevich VV
    J Biol Chem; 2007 Nov; 282(44):32075-83. PubMed ID: 17848565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of Phosphorylation Codes for Arrestin Recruitment by G Protein-Coupled Receptors.
    Zhou XE; He Y; de Waal PW; Gao X; Kang Y; Van Eps N; Yin Y; Pal K; Goswami D; White TA; Barty A; Latorraca NR; Chapman HN; Hubbell WL; Dror RO; Stevens RC; Cherezov V; Gurevich VV; Griffin PR; Ernst OP; Melcher K; Xu HE
    Cell; 2017 Jul; 170(3):457-469.e13. PubMed ID: 28753425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Role of Arrestin-1 Middle Loop in Rhodopsin Binding.
    Vishnivetskiy SA; Huh EK; Karnam PC; Oviedo S; Gurevich EV; Gurevich VV
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of quenching of phototransduction. Binding competition between arrestin and transducin for phosphorhodopsin.
    Krupnick JG; Gurevich VV; Benovic JL
    J Biol Chem; 1997 Jul; 272(29):18125-31. PubMed ID: 9218446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of dominant negative arrestins that inhibit beta2-adrenergic receptor internalization by distinct mechanisms.
    Orsini MJ; Benovic JL
    J Biol Chem; 1998 Dec; 273(51):34616-22. PubMed ID: 9852134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Novel Polar Core and Weakly Fixed C-Tail in Squid Arrestin Provide New Insight into Interaction with Rhodopsin.
    Bandyopadhyay A; Van Eps N; Eger BT; Rauscher S; Yedidi RS; Moroni T; West GM; Robinson KA; Griffin PR; Mitchell J; Ernst OP
    J Mol Biol; 2018 Oct; 430(21):4102-4118. PubMed ID: 30120952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light-dependent translocation of arrestin in the absence of rhodopsin phosphorylation and transducin signaling.
    Mendez A; Lem J; Simon M; Chen J
    J Neurosci; 2003 Apr; 23(8):3124-9. PubMed ID: 12716919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arrestin interactions with G protein-coupled receptors. Direct binding studies of wild type and mutant arrestins with rhodopsin, beta 2-adrenergic, and m2 muscarinic cholinergic receptors.
    Gurevich VV; Dion SB; Onorato JJ; Ptasienski J; Kim CM; Sterne-Marr R; Hosey MM; Benovic JL
    J Biol Chem; 1995 Jan; 270(2):720-31. PubMed ID: 7822302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.