BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 36499152)

  • 1. Hyperthermia of Magnetically Soft-Soft Core-Shell Ferrite Nanoparticles.
    Narayanaswamy V; Jagal J; Khurshid H; Al-Omari IA; Haider M; Kamzin AS; Obaidat IM; Issa B
    Int J Mol Sci; 2022 Nov; 23(23):. PubMed ID: 36499152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tailoring Interfacial Exchange Anisotropy in Hard-Soft Core-Shell Ferrite Nanoparticles for Magnetic Hyperthermia Applications.
    Narayanaswamy V; Al-Omari IA; Kamzin AS; Issa B; Obaidat IM
    Nanomaterials (Basel); 2022 Jan; 12(2):. PubMed ID: 35055278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating Exchange Bias and Coercivity in Fe₃O₄-γ-Fe₂O₃ Core-Shell Nanoparticles of Fixed Core Diameter and Variable Shell Thicknesses.
    Obaidat IM; Nayek C; Manna K; Bhattacharjee G; Al-Omari IA; Gismelseed A
    Nanomaterials (Basel); 2017 Nov; 7(12):. PubMed ID: 29186824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of biocompatible and ultrastable superparamagnetic iron(III) oxide nanoparticles doped with magnesium for efficient magnetic fluid hyperthermia in lung cancer cells.
    Nowicka AM; Ruzycka-Ayoush M; Kasprzak A; Kowalczyk A; Bamburowicz-Klimkowska M; Sikorska M; Sobczak K; Donten M; Ruszczynska A; Nowakowska J; Grudzinski IP
    J Mater Chem B; 2023 May; 11(18):4028-4041. PubMed ID: 36960952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced specific absorption rate in silanol functionalized Fe3O4 core-shell nanoparticles: study of Fe leaching in Fe3O4 and hyperthermia in L929 and HeLa cells.
    Majeed J; Pradhan L; Ningthoujam RS; Vatsa RK; Bahadur D; Tyagi AK
    Colloids Surf B Biointerfaces; 2014 Oct; 122():396-403. PubMed ID: 25089699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High therapeutic efficiency of magnetic hyperthermia in xenograft models achieved with moderate temperature dosages in the tumor area.
    Kossatz S; Ludwig R; Dähring H; Ettelt V; Rimkus G; Marciello M; Salas G; Patel V; Teran FJ; Hilger I
    Pharm Res; 2014 Dec; 31(12):3274-88. PubMed ID: 24890197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of a SiO2 coating on the magnetic properties of Fe3O4 nanoparticles.
    Larumbe S; Gómez-Polo C; Pérez-Landazábal JI; Pastor JM
    J Phys Condens Matter; 2012 Jul; 24(26):266007. PubMed ID: 22700683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specific Absorption Rate Dependency on the Co
    Narayanaswamy V; Al-Omari IA; Kamzin AS; Issa B; Tekin HO; Khourshid H; Kumar H; Mallya A; Sambasivam S; Obaidat IM
    Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34066997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering Core-Shell Structures of Magnetic Ferrite Nanoparticles for High Hyperthermia Performance.
    Darwish MSA; Kim H; Lee H; Ryu C; Young Lee J; Yoon J
    Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32455690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative Heating Efficiency of Cobalt-, Manganese-, and Nickel-Ferrite Nanoparticles for a Hyperthermia Agent in Biomedicines.
    Demirci Dönmez ÇE; Manna PK; Nickel R; Aktürk S; van Lierop J
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):6858-6866. PubMed ID: 30676734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adjusting the Néel relaxation time of Fe3O4/ZnxCo1-xFe2O4 core/shell nanoparticles for optimal heat generation in magnetic hyperthermia.
    Fabris F; Lohr JH; Lima E; de Almeida AA; Troiani H; Rodríguez LM; Vásquez Mansilla M; Aguirre M; Goya GF; Rinaldi D; Ghirri A; Peddis D; Fiorani D; Zysler RD; De Biasi E; Winkler E
    Nanotechnology; 2020 Oct; ():. PubMed ID: 33086203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of Antiproliferative Properties of CoMnZn-Fe
    Narayanaswamy V; Rah B; Al-Omari IA; Kamzin AS; Khurshid H; Muhammad JS; Obaidat IM; Issa B
    Pharmaceuticals (Basel); 2024 Mar; 17(3):. PubMed ID: 38543113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time infrared thermography detection of magnetic nanoparticle hyperthermia in a murine model under a non-uniform field configuration.
    Rodrigues HF; Mello FM; Branquinho LC; Zufelato N; Silveira-Lacerda EP; Bakuzis AF
    Int J Hyperthermia; 2013 Dec; 29(8):752-67. PubMed ID: 24138472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization and experimental characterization of the innovative thermo-brachytherapy seed for prostate cancer treatment.
    Taghizadeh S; Shvydka D; Shan A; Mian OY; Parsai EI
    Med Phys; 2024 Feb; 51(2):839-853. PubMed ID: 38159297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flower-like Mn-Doped Magnetic Nanoparticles Functionalized with α
    Del Sol-Fernández S; Portilla-Tundidor Y; Gutiérrez L; Odio OF; Reguera E; Barber DF; Morales MP
    ACS Appl Mater Interfaces; 2019 Jul; 11(30):26648-26663. PubMed ID: 31287950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of Magnetite Nanoparticles Size and Concentration on Hyperthermia under Various Field Frequencies and Strengths.
    Narayanaswamy V; Sambasivam S; Saj A; Alaabed S; Issa B; Al-Omari IA; Obaidat IM
    Molecules; 2021 Feb; 26(4):. PubMed ID: 33557107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel nanoparticles with Cr
    Zhang W; Zuo X; Niu Y; Wu C; Wang S; Guan S; Silva SRP
    Nanoscale; 2017 Sep; 9(37):13929-13937. PubMed ID: 28726937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacterially synthesized ferrite nanoparticles for magnetic hyperthermia applications.
    Céspedes E; Byrne JM; Farrow N; Moise S; Coker VS; Bencsik M; Lloyd JR; Telling ND
    Nanoscale; 2014 Nov; 6(21):12958-70. PubMed ID: 25232657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial, Temporal, and Dose Control of Drug Delivery using Noninvasive Magnetic Stimulation.
    Chen W; Cheng CA; Zink JI
    ACS Nano; 2019 Feb; 13(2):1292-1308. PubMed ID: 30633500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling the dominant magnetic relaxation mechanisms for magnetic hyperthermia in bimagnetic core-shell nanoparticles.
    Fabris F; Lima E; De Biasi E; Troiani HE; Vásquez Mansilla M; Torres TE; Fernández Pacheco R; Ibarra MR; Goya GF; Zysler RD; Winkler EL
    Nanoscale; 2019 Feb; 11(7):3164-3172. PubMed ID: 30520920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.