BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 36499152)

  • 21. Model Driven Optimization of Magnetic Anisotropy of Exchange-coupled Core-Shell Ferrite Nanoparticles for Maximal Hysteretic Loss.
    Zhang Q; Castellanos-Rubio I; Munshi R; Orue I; Pelaz B; Gries KI; Parak WJ; Del Pino P; Pralle A
    Chem Mater; 2015 Nov; 27(21):7380-7387. PubMed ID: 31105383
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exchange-bias and magnetic anisotropy fields in core-shell ferrite nanoparticles.
    Silva FG; Depeyrot J; Raikher YL; Stepanov VI; Poperechny IS; Aquino R; Ballon G; Geshev J; Dubois E; Perzynski R
    Sci Rep; 2021 Mar; 11(1):5474. PubMed ID: 33750828
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Self-Limitations of Heat Release in Coupled Core-Shell Spinel Ferrite Nanoparticles: Frequency, Time, and Temperature Dependencies.
    Khanal S; Sanna Angotzi M; Mameli V; Veverka M; Xin HL; Cannas C; Vejpravová J
    Nanomaterials (Basel); 2021 Oct; 11(11):. PubMed ID: 34835613
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adjusting the Néel relaxation time of Fe
    Fabris F; Lohr J; Lima E; de Almeida AA; Troiani HE; Rodríguez LM; Vásquez Mansilla M; Aguirre MH; Goya GF; Rinaldi D; Ghirri A; Peddis D; Fiorani D; Zysler RD; De Biasi E; Winkler EL
    Nanotechnology; 2020 Nov; 32(6):065703. PubMed ID: 33210620
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-performance PEGylated Mn-Zn ferrite nanocrystals as a passive-targeted agent for magnetically induced cancer theranostics.
    Xie J; Zhang Y; Yan C; Song L; Wen S; Zang F; Chen G; Ding Q; Yan C; Gu N
    Biomaterials; 2014 Nov; 35(33):9126-36. PubMed ID: 25106772
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Magnetically controlled drug delivery and hyperthermia effects of core-shell Cu@Mn
    Mohammad F; Bwatanglang IB; Al-Lohedan HA; Shaik JP; Moosavi M; Dahan WM; Al-Tilasi HH; Aldhayan DM; Chavali M; Soleiman AA
    Int J Biol Macromol; 2023 Sep; 249():126071. PubMed ID: 37524291
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Incorporation of doxorubicin and CoFe
    Bahmani E; Banihashem S; Shirinzad S; Bybordi S; Shikhi-Abadi PG; Jazi FS; Irani M
    Int J Pharm; 2024 Jan; 649():123618. PubMed ID: 37977290
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Strong interfacial coupling through exchange interactions in soft/hard core-shell nanoparticles as a function of cationic distribution.
    Sartori K; Cotin G; Bouillet C; Halté V; Bégin-Colin S; Choueikani F; Pichon BP
    Nanoscale; 2019 Jul; 11(27):12946-12958. PubMed ID: 31259329
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural perspective on revealing heat dissipation behavior of CoFe
    Shams SF; Ghazanfari MR; Pettinger S; Tavabi AH; Siemensmeyer K; Smekhova A; Dunin-Borkowski RE; Westmeyer GG; Schmitz-Antoniak C
    Phys Chem Chem Phys; 2020 Dec; 22(46):26728-26741. PubMed ID: 33078790
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultrathin Interface Regime of Core-Shell Magnetic Nanoparticles for Effective Magnetism Tailoring.
    Moon SH; Noh SH; Lee JH; Shin TH; Lim Y; Cheon J
    Nano Lett; 2017 Feb; 17(2):800-804. PubMed ID: 28045532
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cell-Membrane-Coated and Cell-Penetrating Peptide-Conjugated Trimagnetic Nanoparticles for Targeted Magnetic Hyperthermia of Prostate Cancer Cells.
    Nica V; Marino A; Pucci C; Şen Ö; Emanet M; De Pasquale D; Carmignani A; Petretto A; Bartolucci M; Lauciello S; Brescia R; de Boni F; Prato M; Marras S; Drago F; Hammad M; Segets D; Ciofani G
    ACS Appl Mater Interfaces; 2023 Jun; 15(25):30008-30028. PubMed ID: 37312240
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of heat dissipation of superparamagnetic nanoparticles in alternating magnetic field on three human cancer cell lines in magnetic fluid hyperthermia.
    Attar MM; Haghpanahi M
    Electromagn Biol Med; 2016; 35(4):305-20. PubMed ID: 27015154
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Using kinetic Monte Carlo simulations to design efficient magnetic nanoparticles for clinical hyperthermia.
    Papadopoulos C; Kolokithas-Ntoukas A; Moreno R; Fuentes D; Loudos G; Loukopoulos VC; Kagadis GC
    Med Phys; 2022 Jan; 49(1):547-567. PubMed ID: 34724215
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [A method of showing thermal effect of iron oxide nanoparticles in alternating magnetic field].
    Liu X; Xu B; Xia QS; Zhao TD; Tang JT
    Ai Zheng; 2005 Sep; 24(9):1148-50. PubMed ID: 16159444
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced Magnetic Hyperthermia of Magnetoferritin through Synthesis at Elevated Temperature.
    Yu J; Cao C; Fang F; Pan Y
    Int J Mol Sci; 2022 Apr; 23(7):. PubMed ID: 35409372
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural and Magnetic Response in Bimetallic Core/Shell Magnetic Nanoparticles.
    Nairan A; Khan U; Iqbal M; Khan M; Javed K; Riaz S; Naseem S; Han X
    Nanomaterials (Basel); 2016 Apr; 6(4):. PubMed ID: 28335200
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Preparation of carboplatin-Fe@C-loaded chitosan nanoparticles and study on hyperthermia combined with pharmacotherapy for liver cancer.
    Li FR; Yan WH; Guo YH; Qi H; Zhou HX
    Int J Hyperthermia; 2009 Aug; 25(5):383-91. PubMed ID: 19391033
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fe
    García L; Garaio E; López-Ortega A; Galarreta-Rodriguez I; Cervera-Gabalda L; Cruz-Quesada G; Cornejo A; Garrido JJ; Gómez-Polo C; Pérez-Landazábal JI
    Langmuir; 2023 Jan; 39(1):211-219. PubMed ID: 36562662
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficient treatment of breast cancer xenografts with multifunctionalized iron oxide nanoparticles combining magnetic hyperthermia and anti-cancer drug delivery.
    Kossatz S; Grandke J; Couleaud P; Latorre A; Aires A; Crosbie-Staunton K; Ludwig R; Dähring H; Ettelt V; Lazaro-Carrillo A; Calero M; Sader M; Courty J; Volkov Y; Prina-Mello A; Villanueva A; Somoza Á; Cortajarena AL; Miranda R; Hilger I
    Breast Cancer Res; 2015 May; 17(1):66. PubMed ID: 25968050
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Magnetic hyperthermia and pH-responsive effective drug delivery to the sub-cellular level of human breast cancer cells by modified CoFe
    Oh Y; Moorthy MS; Manivasagan P; Bharathiraja S; Oh J
    Biochimie; 2017 Feb; 133():7-19. PubMed ID: 27916642
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.