BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 36499185)

  • 1. Design, Synthesis and Actual Applications of the Polymers Containing Acidic P-OH Fragments: Part 1. Polyphosphodiesters.
    Nifant'ev IE; Ivchenko PV
    Int J Mol Sci; 2022 Nov; 23(23):. PubMed ID: 36499185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design, Synthesis and Actual Applications of the Polymers Containing Acidic P-OH Fragments: Part 2-Sidechain Phosphorus-Containing Polyacids.
    Nifant'ev IE; Ivchenko PV
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36675149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bone Mineral Affinity of Polyphosphodiesters.
    Iwasaki Y
    Molecules; 2020 Feb; 25(3):. PubMed ID: 32050545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acidic polysaccharide mimics via ring-opening metathesis polymerization.
    Wathier M; Stoddart SS; Sheehy MJ; Grinstaff MW
    J Am Chem Soc; 2010 Nov; 132(45):15887-9. PubMed ID: 20964329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis, characterization, and biocompatibility of biodegradable hyperbranched polyglycerols from acid-cleavable ketal group functionalized initiators.
    Shenoi RA; Lai BF; Kizhakkedathu JN
    Biomacromolecules; 2012 Oct; 13(10):3018-30. PubMed ID: 22920950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and biomedical applications of functional poly(α-hydroxy acids) via ring-opening polymerization of O-carboxyanhydrides.
    Yin Q; Yin L; Wang H; Cheng J
    Acc Chem Res; 2015 Jul; 48(7):1777-87. PubMed ID: 26065588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poly(aryleneethynylene)s: Properties, Applications and Synthesis Through Alkyne Metathesis.
    Ortiz M; Yu C; Jin Y; Zhang W
    Top Curr Chem (Cham); 2017 Aug; 375(4):69. PubMed ID: 28653155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tyrosine-Derived Polymers as Potential Biomaterials: Synthesis Strategies, Properties, and Applications.
    Jain S; John A; George CE; Johnson RP
    Biomacromolecules; 2023 Feb; 24(2):531-565. PubMed ID: 36702743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Versatile Functionalization of Polysaccharides via Polymer Grafts: From Design to Biomedical Applications.
    Hu Y; Li Y; Xu FJ
    Acc Chem Res; 2017 Feb; 50(2):281-292. PubMed ID: 28068064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Newly Developed Techniques on Polycondensation, Ring-Opening Polymerization and Polymer Modification: Focus on Poly(Lactic Acid).
    Hu Y; Daoud WA; Cheuk KKL; Lin CSK
    Materials (Basel); 2016 Feb; 9(3):. PubMed ID: 28773260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly(aspartic acid) in Biomedical Applications: From Polymerization, Modification, Properties, Degradation, and Biocompatibility to Applications.
    Adelnia H; Tran HDN; Little PJ; Blakey I; Ta HT
    ACS Biomater Sci Eng; 2021 Jun; 7(6):2083-2105. PubMed ID: 33797239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Joining Two Natural Motifs: Catechol-Containing Poly(phosphoester)s.
    Becker G; Ackermann LM; Schechtel E; Klapper M; Tremel W; Wurm FR
    Biomacromolecules; 2017 Mar; 18(3):767-777. PubMed ID: 28140560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Simple and Efficient Synthesis of an Acid-labile Polyphosphoramidate by Organobase-catalyzed Ring-Opening Polymerization and Transformation to Polyphosphoester Ionomers by Acid Treatment.
    Zhang S; Wang H; Shen Y; Zhang F; Seetho K; Zou J; Taylor JS; Dove AP; Wooley KL
    Macromolecules; 2013 Jul; 46(13):5141-5149. PubMed ID: 23997276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent Advances in Amphiphilic Polymer-Oligonucleotide Nanomaterials via Living/Controlled Polymerization Technologies.
    Sun H; Yang L; Thompson MP; Schara S; Cao W; Choi W; Hu Z; Zang N; Tan W; Gianneschi NC
    Bioconjug Chem; 2019 Jul; 30(7):1889-1904. PubMed ID: 30969752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA-inspired oligomers: from oligophosphates to functional materials.
    Vybornyi M; Vyborna Y; Häner R
    Chem Soc Rev; 2019 Aug; 48(16):4347-4360. PubMed ID: 31263808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyphosphates and other phosphorus-containing polymers for drug delivery applications.
    Chaubal MV; Gupta AS; Lopina ST; Bruley DF
    Crit Rev Ther Drug Carrier Syst; 2003; 20(4):295-315. PubMed ID: 14635982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Main-Chain Phosphorus-Containing Polymers for Therapeutic Applications.
    Strasser P; Teasdale I
    Molecules; 2020 Apr; 25(7):. PubMed ID: 32276516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immobilized Candida antarctica lipase B catalyzed synthesis of biodegradable polymers for biomedical applications.
    Lu Y; Lv Q; Liu B; Liu J
    Biomater Sci; 2019 Nov; 7(12):4963-4983. PubMed ID: 31532401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-pot synthesis of brush-like polymers via integrated ring-opening metathesis polymerization and polymerization of amino acid N-carboxyanhydrides.
    Lu H; Wang J; Lin Y; Cheng J
    J Am Chem Soc; 2009 Sep; 131(38):13582-3. PubMed ID: 19725499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Guideline for the Synthesis of Amino-Acid-Functionalized Monomers and Their Polymerizations.
    Leiske MN; Kempe K
    Macromol Rapid Commun; 2022 Jan; 43(2):e2100615. PubMed ID: 34761461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.