These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

398 related articles for article (PubMed ID: 36499296)

  • 21. Compartmentalized Self-Tagging for In Vitro-Directed Evolution of XNA Polymerases.
    Pinheiro VB; Arangundy-Franklin S; Holliger P
    Curr Protoc Nucleic Acid Chem; 2014 Jun; 57():9.9.1-18. PubMed ID: 24961724
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis and polymerase recognition of a pyrrolocytidine TNA triphosphate.
    Mei H; Wang Y; Yik EJ; Chaput JC
    Biopolymers; 2021 Jan; 112(1):e23388. PubMed ID: 32615644
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Engineering-driven biological insights into DNA polymerase mechanism.
    Pinheiro VB
    Curr Opin Biotechnol; 2019 Dec; 60():9-16. PubMed ID: 30502514
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design and Hybridization Properties of Acyclic Xeno Nucleic Acid Oligomers.
    Murayama K; Asanuma H
    Chembiochem; 2021 Aug; 22(15):2507-2515. PubMed ID: 33998765
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recovery of Information Stored in Modified DNA with an Evolved Polymerase.
    Shroff R; Ellefson JW; Wang SS; Boulgakov AA; Hughes RA; Ellington AD
    ACS Synth Biol; 2022 Feb; 11(2):554-561. PubMed ID: 35113518
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Orthogonal Genetic Systems.
    Chaput JC; Herdewijn P; Hollenstein M
    Chembiochem; 2020 May; 21(10):1408-1411. PubMed ID: 31889390
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reverse Transcriptases: From Discovery and Applications to Xenobiology.
    Huber LB; Betz K; Marx A
    Chembiochem; 2023 Mar; 24(5):e202200521. PubMed ID: 36354312
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Accurate and Efficient One-Pot Reverse Transcription and Amplification of 2'-Fluoro-Modified Nucleic Acids by Commercial DNA Polymerases.
    Thompson AS; Barrett SE; Weiden AG; Venkatesh A; Seto MKC; Gottlieb SZP; Leconte AM
    Biochemistry; 2020 Aug; 59(31):2833-2841. PubMed ID: 32659079
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Engineering polymerases for applications in synthetic biology.
    Nikoomanzar A; Chim N; Yik EJ; Chaput JC
    Q Rev Biophys; 2020 Jul; 53():e8. PubMed ID: 32715992
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DNA Polymerase Variants with High Processivity and Accuracy for Encoding and Decoding Locked Nucleic Acid Sequences.
    Hoshino H; Kasahara Y; Kuwahara M; Obika S
    J Am Chem Soc; 2020 Dec; 142(51):21530-21537. PubMed ID: 33306372
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional Xeno Nucleic Acids for Biomedical Application.
    Tu T; Huan S; Ke G; Zhang X
    Chem Res Chin Univ; 2022 Jul; ():1-7. PubMed ID: 35814030
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Double-headed nucleotides as xeno nucleic acids: information storage and polymerase recognition.
    Beck KM; Krogh MB; Hornum M; Ludford PT; Tor Y; Nielsen P
    Org Biomol Chem; 2020 Sep; 18(36):7213-7223. PubMed ID: 32909574
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Toward safe genetically modified organisms through the chemical diversification of nucleic acids.
    Herdewijn P; Marlière P
    Chem Biodivers; 2009 Jun; 6(6):791-808. PubMed ID: 19554563
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modified nucleic acids: replication, evolution, and next-generation therapeutics.
    Duffy K; Arangundy-Franklin S; Holliger P
    BMC Biol; 2020 Sep; 18(1):112. PubMed ID: 32878624
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bacterial thermophilic DNA polymerases: A focus on prominent biotechnological applications.
    Akram F; Shah FI; Ibrar R; Fatima T; Haq IU; Naseem W; Gul MA; Tehreem L; Haider G
    Anal Biochem; 2023 Jun; 671():115150. PubMed ID: 37054862
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The proto-Nucleic Acid Builder: a software tool for constructing nucleic acid analogs.
    Alenaizan A; Barnett JL; Hud NV; Sherrill CD; Petrov AS
    Nucleic Acids Res; 2021 Jan; 49(1):79-89. PubMed ID: 33300028
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthetic Life with Alternative Nucleic Acids as Genetic Materials.
    Nie P; Bai Y; Mei H
    Molecules; 2020 Jul; 25(15):. PubMed ID: 32751873
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Directed evolution of artificial enzymes (XNAzymes) from diverse repertoires of synthetic genetic polymers.
    Taylor AI; Holliger P
    Nat Protoc; 2015 Oct; 10(10):1625-42. PubMed ID: 26401917
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineering and application of polymerases for synthetic genetics.
    Houlihan G; Arangundy-Franklin S; Holliger P
    Curr Opin Biotechnol; 2017 Dec; 48():168-179. PubMed ID: 28601700
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR).
    Velbel MA; Cockell CS; Glavin DP; Marty B; Regberg AB; Smith AL; Tosca NJ; Wadhwa M; Kminek G; Meyer MA; Beaty DW; Carrier BL; Haltigin T; Hays LE; Agee CB; Busemann H; Cavalazzi B; Debaille V; Grady MM; Hauber E; Hutzler A; McCubbin FM; Pratt LM; Smith CL; Summons RE; Swindle TD; Tait KT; Udry A; Usui T; Westall F; Zorzano MP
    Astrobiology; 2022 Jun; 22(S1):S112-S164. PubMed ID: 34904892
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.