These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

393 related articles for article (PubMed ID: 36499296)

  • 41. Phosphonomethyl Oligonucleotides as Backbone-Modified Artificial Genetic Polymers.
    Liu C; Cozens C; Jaziri F; Rozenski J; Maréchal A; Dumbre S; Pezo V; Marlière P; Pinheiro VB; Groaz E; Herdewijn P
    J Am Chem Soc; 2018 May; 140(21):6690-6699. PubMed ID: 29722977
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Discovery and evolution of RNA and XNA reverse transcriptase function and fidelity.
    Houlihan G; Arangundy-Franklin S; Porebski BT; Subramanian N; Taylor AI; Holliger P
    Nat Chem; 2020 Aug; 12(8):683-690. PubMed ID: 32690899
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Diversity and distribution of thermophilic microorganisms and their applications in biotechnology.
    Arbab S; Ullah H; Khan MIU; Khattak MNK; Zhang J; Li K; Hassan IU
    J Basic Microbiol; 2022 Feb; 62(2):95-108. PubMed ID: 34878177
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The XNA world: progress towards replication and evolution of synthetic genetic polymers.
    Pinheiro VB; Holliger P
    Curr Opin Chem Biol; 2012 Aug; 16(3-4):245-52. PubMed ID: 22704981
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Engineered Polymerases with Altered Substrate Specificity: Expression and Purification.
    Nikoomanzar A; Dunn MR; Chaput JC
    Curr Protoc Nucleic Acid Chem; 2017 Jun; 69():4.75.1-4.75.20. PubMed ID: 28628207
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Xenobiology: a new form of life as the ultimate biosafety tool.
    Schmidt M
    Bioessays; 2010 Apr; 32(4):322-31. PubMed ID: 20217844
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Xenobiotic Nucleic Acid (XNA) Synthesis by Phi29 DNA Polymerase.
    Torres LL; Pinheiro VB
    Curr Protoc Chem Biol; 2018 Jun; 10(2):e41. PubMed ID: 29927114
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Non canonical genetic material.
    Eremeeva E; Herdewijn P
    Curr Opin Biotechnol; 2019 Jun; 57():25-33. PubMed ID: 30554069
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evaluating the Rate and Substrate Specificity of Laboratory Evolved XNA Polymerases.
    Nikoomanzar A; Dunn MR; Chaput JC
    Anal Chem; 2017 Dec; 89(23):12622-12625. PubMed ID: 29148714
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nontemplate polymerization of free nucleotides into genetic elements by thermophilic DNA polymerase in vitro.
    Cheng DW; Calderón-Urrea A
    Nucleosides Nucleotides Nucleic Acids; 2011 Nov; 30(11):979-90. PubMed ID: 22060559
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Directed evolution as a tool for understanding and optimizing nucleic acid polymerase function.
    Brakmann S
    Cell Mol Life Sci; 2005 Nov; 62(22):2634-46. PubMed ID: 16143831
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biological applications of xeno nucleic acids.
    Morihiro K; Kasahara Y; Obika S
    Mol Biosyst; 2017 Jan; 13(2):235-245. PubMed ID: 27827481
    [TBL] [Abstract][Full Text] [Related]  

  • 53. DNA polymerases and biotechnological applications.
    Aschenbrenner J; Marx A
    Curr Opin Biotechnol; 2017 Dec; 48():187-195. PubMed ID: 28618333
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Direct Enzyme Engineering of B Family DNA Polymerases for Biotechnological Approaches.
    Kuznetsova AA; Kuznetsov NA
    Bioengineering (Basel); 2023 Sep; 10(10):. PubMed ID: 37892880
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Functional biology and biotechnology of thermophilic viruses.
    Doss RK; Palmer M; Mead DA; Hedlund BP
    Essays Biochem; 2023 Aug; 67(4):671-684. PubMed ID: 37222046
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evolution of thermophilic DNA polymerases for the recognition and amplification of C2'-modified DNA.
    Chen T; Hongdilokkul N; Liu Z; Adhikary R; Tsuen SS; Romesberg FE
    Nat Chem; 2016 Jun; 8(6):556-62. PubMed ID: 27219699
    [TBL] [Abstract][Full Text] [Related]  

  • 57. DNA polymerases as engines for biotechnology.
    Hamilton SC; Farchaus JW; Davis MC
    Biotechniques; 2001 Aug; 31(2):370-6, 378-80, 382-3. PubMed ID: 11515374
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterization and engineering of a DNA polymerase reveals a single amino-acid substitution in the fingers subdomain to increase strand-displacement activity of A-family prokaryotic DNA polymerases.
    Piotrowski Y; Gurung MK; Larsen AN
    BMC Mol Cell Biol; 2019 Aug; 20(1):31. PubMed ID: 31399021
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Isothermal Amplification of Nucleic Acids.
    Zhao Y; Chen F; Li Q; Wang L; Fan C
    Chem Rev; 2015 Nov; 115(22):12491-545. PubMed ID: 26551336
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Improving Polymerase Activity with Unnatural Substrates by Sampling Mutations in Homologous Protein Architectures.
    Dunn MR; Otto C; Fenton KE; Chaput JC
    ACS Chem Biol; 2016 May; 11(5):1210-9. PubMed ID: 26860781
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.