These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 36499508)

  • 1. Direct Cardiac Epigenetic Reprogramming through Codelivery of 5'Azacytidine and miR-133a Nanoformulation.
    Muniyandi P; Palaninathan V; Hanajiri T; Maekawa T
    Int J Mol Sci; 2022 Dec; 23(23):. PubMed ID: 36499508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Demethylation of H3K27 Is Essential for the Induction of Direct Cardiac Reprogramming by miR Combo.
    Dal-Pra S; Hodgkinson CP; Mirotsou M; Kirste I; Dzau VJ
    Circ Res; 2017 Apr; 120(9):1403-1413. PubMed ID: 28209718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MiR-133 promotes cardiac reprogramming by directly repressing Snai1 and silencing fibroblast signatures.
    Muraoka N; Yamakawa H; Miyamoto K; Sadahiro T; Umei T; Isomi M; Nakashima H; Akiyama M; Wada R; Inagawa K; Nishiyama T; Kaneda R; Fukuda T; Takeda S; Tohyama S; Hashimoto H; Kawamura Y; Goshima N; Aeba R; Yamagishi H; Fukuda K; Ieda M
    EMBO J; 2014 Jul; 33(14):1565-81. PubMed ID: 24920580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of Cardiomyocytes by microRNA-Mediated Reprogramming in Optimized Reprogramming Media.
    Wang X; Hodgkinson CP; Dzau VJ
    Methods Mol Biol; 2021; 2239():47-59. PubMed ID: 33226612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MiR-590 Promotes Transdifferentiation of Porcine and Human Fibroblasts Toward a Cardiomyocyte-Like Fate by Directly Repressing Specificity Protein 1.
    Singh VP; Mathison M; Patel V; Sanagasetti D; Gibson BW; Yang J; Rosengart TK
    J Am Heart Assoc; 2016 Nov; 5(11):. PubMed ID: 27930352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single cell qPCR reveals that additional HAND2 and microRNA-1 facilitate the early reprogramming progress of seven-factor-induced human myocytes.
    Bektik E; Dennis A; Prasanna P; Madabhushi A; Fu JD
    PLoS One; 2017; 12(8):e0183000. PubMed ID: 28796841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes.
    Jayawardena TM; Egemnazarov B; Finch EA; Zhang L; Payne JA; Pandya K; Zhang Z; Rosenberg P; Mirotsou M; Dzau VJ
    Circ Res; 2012 May; 110(11):1465-73. PubMed ID: 22539765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of Cardiomyocyte-Like Cells by Fibroblast Reprogramming with Defined Factors.
    Bektik E; Fu JD
    Methods Mol Biol; 2021; 2239():33-46. PubMed ID: 33226611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide pharmacologic unmasking identifies tumor suppressive microRNAs in multiple myeloma.
    Bi C; Chung TH; Huang G; Zhou J; Yan J; Ahmann GJ; Fonseca R; Chng WJ
    Oncotarget; 2015 Sep; 6(28):26508-18. PubMed ID: 26164366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct Reprogramming of Adult Human Cardiac Fibroblasts into Induced Cardiomyocytes Using miRcombo.
    Paoletti C; Divieto C; Chiono V
    Methods Mol Biol; 2022; 2573():31-40. PubMed ID: 36040584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Re-patterning of H3K27me3, H3K4me3 and DNA methylation during fibroblast conversion into induced cardiomyocytes.
    Liu Z; Chen O; Zheng M; Wang L; Zhou Y; Yin C; Liu J; Qian L
    Stem Cell Res; 2016 Mar; 16(2):507-18. PubMed ID: 26957038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. p63 silencing induces epigenetic modulation to enhance human cardiac fibroblast to cardiomyocyte-like differentiation.
    Pinnamaneni JP; Singh VP; Kim MB; Ryan CT; Pugazenthi A; Sanagasetti D; Mathison M; Yang J; Rosengart TK
    Sci Rep; 2022 Jul; 12(1):11416. PubMed ID: 35794145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Boosters and barriers for direct cardiac reprogramming.
    Talkhabi M; Zonooz ER; Baharvand H
    Life Sci; 2017 Jun; 178():70-86. PubMed ID: 28427897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. S-phase Synchronization Facilitates the Early Progression of Induced-Cardiomyocyte Reprogramming through Enhanced Cell-Cycle Exit.
    Bektik E; Dennis A; Pawlowski G; Zhou C; Maleski D; Takahashi S; Laurita KR; Deschênes I; Fu JD
    Int J Mol Sci; 2018 May; 19(5):. PubMed ID: 29734659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficiency Comparison of Direct Reprogramming CD34
    Andrianto ; Pikir BS; Ferdiansyah ; Pristianto T; Hermawan HO; Zaini BSI; Muhammad AR
    Cell Reprogram; 2022 Feb; 24(1):21-25. PubMed ID: 35073164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct reprogramming as a route to cardiac repair.
    Garry GA; Bassel-Duby R; Olson EN
    Semin Cell Dev Biol; 2022 Feb; 122():3-13. PubMed ID: 34246567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Vitro Conversion of Murine Fibroblasts into Cardiomyocyte-Like Cells.
    Xu J; Wang L; Liu J; Qian L
    Methods Mol Biol; 2021; 2158():155-170. PubMed ID: 32857372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. miR-133a-3p attenuates cardiomyocyte hypertrophy through inhibiting pyroptosis activation by targeting IKKε.
    Zhu YF; Wang R; Chen W; Cao YD; Li LP; Chen X
    Acta Histochem; 2021 Jan; 123(1):151653. PubMed ID: 33246224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conservation of miR combo based direct cardiac reprogramming.
    Baksh SS; Hodgkinson CP
    Biochem Biophys Rep; 2022 Sep; 31():101310. PubMed ID: 35860436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced Generation of Induced Cardiomyocytes Using a Small-Molecule Cocktail to Overcome Barriers to Cardiac Cellular Reprogramming.
    Singh VP; Pinnamaneni JP; Pugazenthi A; Sanagasetti D; Mathison M; Wang K; Yang J; Rosengart TK
    J Am Heart Assoc; 2020 Jun; 9(12):e015686. PubMed ID: 32500803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.