BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 36499555)

  • 1. Duckweed Is a Promising Feedstock of Biofuels: Advantages and Approaches.
    Yang GL
    Int J Mol Sci; 2022 Dec; 23(23):. PubMed ID: 36499555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growing duckweed for biofuel production: a review.
    Cui W; Cheng JJ
    Plant Biol (Stuttg); 2015 Jan; 17 Suppl 1():16-23. PubMed ID: 24985498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of light intensity and photoperiod on duckweed biomass and starch accumulation for bioethanol production.
    Yin Y; Yu C; Yu L; Zhao J; Sun C; Ma Y; Zhou G
    Bioresour Technol; 2015; 187():84-90. PubMed ID: 25841186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving biomass and starch accumulation of bioenergy crop duckweed (Landoltia punctata) by abscisic acid application.
    Liu Y; Chen X; Wang X; Fang Y; Huang M; Guo L; Zhang Y; Zhao H
    Sci Rep; 2018 Jun; 8(1):9544. PubMed ID: 29934519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Progress in thermochemical conversion of duckweed and upgrading of the bio-oil: A critical review.
    Djandja OS; Yin L; Wang Z; Guo Y; Zhang X; Duan P
    Sci Total Environ; 2021 May; 769():144660. PubMed ID: 33736270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative analysis of duckweed cultivation with sewage water and SH media for production of fuel ethanol.
    Yu C; Sun C; Yu L; Zhu M; Xu H; Zhao J; Ma Y; Zhou G
    PLoS One; 2014; 9(12):e115023. PubMed ID: 25517893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large-scale screening and characterisation of Lemna aequinoctialis and Spirodela polyrhiza strains for starch production.
    Ma YB; Zhu M; Yu CJ; Wang Y; Liu Y; Li ML; Sun YD; Zhao JS; Zhou GK
    Plant Biol (Stuttg); 2018 Mar; 20(2):357-364. PubMed ID: 29222918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Positive effects of duckweed polycultures on starch and protein accumulation.
    Li Y; Zhang F; Daroch M; Tang J
    Biosci Rep; 2016 Oct; 36(5):. PubMed ID: 27515418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosynthesis of the starch is improved by the supplement of nickel (Ni
    Shao J; Liu Z; Ding Y; Wang J; Li X; Yang Y
    J Plant Res; 2020 Jul; 133(4):587-596. PubMed ID: 32458160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Natural variance in salt tolerance and induction of starch accumulation in duckweeds.
    Sree KS; Adelmann K; Garcia C; Lam E; Appenroth KJ
    Planta; 2015 Jun; 241(6):1395-404. PubMed ID: 25693515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced biomass production and pollutant removal by duckweed in mixotrophic conditions.
    Sun Z; Guo W; Yang J; Zhao X; Chen Y; Yao L; Hou H
    Bioresour Technol; 2020 Dec; 317():124029. PubMed ID: 32916457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High flavonoid accompanied with high starch accumulation triggered by nutrient starvation in bioenergy crop duckweed (Landoltia punctata).
    Tao X; Fang Y; Huang MJ; Xiao Y; Liu Y; Ma XR; Zhao H
    BMC Genomics; 2017 Feb; 18(1):166. PubMed ID: 28201992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of various spectral compositions on micro-polluted water purification and biofuel feedstock production using duckweed.
    Li Q; Yi Z; Yang G; Xu Y; Jin Y; Tan L; Du A; He K; Zhao H; Fang Y
    Environ Sci Pollut Res Int; 2022 Jul; 29(34):52003-52012. PubMed ID: 35257341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering Corynebacterium crenatum to produce higher alcohols for biofuel using hydrolysates of duckweed (Landoltia punctata) as feedstock.
    Su H; Jiang J; Lu Q; Zhao Z; Xie T; Zhao H; Wang M
    Microb Cell Fact; 2015 Feb; 14():16. PubMed ID: 25889648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using proteomic analysis to investigate uniconazole-induced phytohormone variation and starch accumulation in duckweed (Landoltia punctata).
    Huang M; Fang Y; Liu Y; Jin Y; Sun J; Tao X; Ma X; He K; Zhao H
    BMC Biotechnol; 2015 Sep; 15():81. PubMed ID: 26369558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pilot-scale comparison of four duckweed strains from different genera for potential application in nutrient recovery from wastewater and valuable biomass production.
    Zhao Y; Fang Y; Jin Y; Huang J; Bao S; Fu T; He Z; Wang F; Wang M; Zhao H
    Plant Biol (Stuttg); 2015 Jan; 17 Suppl 1():82-90. PubMed ID: 24942851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Survey of duckweed diversity in Lake Chao and total fatty acid, triacylglycerol, profiles of representative strains.
    Tang J; Li Y; Ma J; Cheng JJ
    Plant Biol (Stuttg); 2015 Sep; 17(5):1066-72. PubMed ID: 25950142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nutrient starvation and light deprivation effects on starch accumulation in Landoltia punctata cultivated on anaerobically digested dairy manure.
    Kruger K; Chen L; He BB
    J Environ Qual; 2020 Jul; 49(4):1044-1053. PubMed ID: 33016485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Poly(lactic acid)/thermoplastic cassava starch blends filled with duckweed biomass.
    Yoksan R; Boontanimitr A; Klompong N; Phothongsurakun T
    Int J Biol Macromol; 2022 Apr; 203():369-378. PubMed ID: 35104474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of treated sewage characteristics on duckweed biomass production and microbial communities.
    Iwano H; Hatohara S; Tagawa T; Tamaki H; Li YY; Kubota K
    Water Sci Technol; 2020 Jul; 82(2):292-302. PubMed ID: 32941171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.