These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
340 related articles for article (PubMed ID: 36499582)
1. Novel Molecular Insights into Leukemic Evolution of Myeloproliferative Neoplasms: A Single Cell Perspective. Rontauroli S; Carretta C; Parenti S; Bertesi M; Manfredini R Int J Mol Sci; 2022 Dec; 23(23):. PubMed ID: 36499582 [TBL] [Abstract][Full Text] [Related]
2. Mutational landscape of blast phase myeloproliferative neoplasms (MPN-BP) and antecedent MPN. Pasca S; Chifotides HT; Verstovsek S; Bose P Int Rev Cell Mol Biol; 2022; 366():83-124. PubMed ID: 35153007 [TBL] [Abstract][Full Text] [Related]
3. CALR, JAK2, and MPL mutation profiles in patients with four different subtypes of myeloproliferative neoplasms: primary myelofibrosis, essential thrombocythemia, polycythemia vera, and myeloproliferative neoplasm, unclassifiable. Kim SY; Im K; Park SN; Kwon J; Kim JA; Lee DS Am J Clin Pathol; 2015 May; 143(5):635-44. PubMed ID: 25873496 [TBL] [Abstract][Full Text] [Related]
4. Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms. Vainchenker W; Kralovics R Blood; 2017 Feb; 129(6):667-679. PubMed ID: 28028029 [TBL] [Abstract][Full Text] [Related]
5. [The genetic characteristics of BCR-ABL-negative myeloproliferative neoplasms]. Lyu XD; Li YW; Guo Z; Xin YP; Hu JY; Fan RH; Song YP Zhonghua Nei Ke Za Zhi; 2020 Jan; 59(1):35-39. PubMed ID: 31887834 [No Abstract] [Full Text] [Related]
7. Systematization of analytical studies of polycythemia vera, essential thrombocythemia and primary myelofibrosis, and a meta-analysis of the frequency of JAK2, CALR and MPL mutations: 2000-2018. Mejía-Ochoa M; Acevedo Toro PA; Cardona-Arias JA BMC Cancer; 2019 Jun; 19(1):590. PubMed ID: 31208359 [TBL] [Abstract][Full Text] [Related]
8. Diagnosis, risk stratification, and response evaluation in classical myeloproliferative neoplasms. Rumi E; Cazzola M Blood; 2017 Feb; 129(6):680-692. PubMed ID: 28028026 [TBL] [Abstract][Full Text] [Related]
9. Clinical Manifestations and Risk Factors for Complications of Philadelphia Chromosome-Negative Myeloproliferative Neoplasms. Duangnapasatit B; Rattarittamrong E; Rattanathammethee T; Hantrakool S; Chai-Adisaksopha C; Tantiworawit A; Norasetthada L Asian Pac J Cancer Prev; 2015; 16(12):5013-8. PubMed ID: 26163633 [TBL] [Abstract][Full Text] [Related]
10. Targets in MPNs and potential therapeutics. Levy G; Mambet C; Pecquet C; Bailly S; Havelange V; Diaconu CC; Constantinescu SN Int Rev Cell Mol Biol; 2022; 366():41-81. PubMed ID: 35153006 [TBL] [Abstract][Full Text] [Related]
11. MOLECULAR GENETIC ABNORMALITIES IN THE GENOME OF PATIENTS WITH Ph-NEGATIVE MYELOPROLIFERATIVE NEOPLASIA AFFECTED BY IONIZING RADIATION AS A RESULT OF THE CHORNOBYL NUCLEAR ACCIDENT. Poluben LO; Neumerzhytska LV; Klymenko SV; Fraenkel P; Balk C; Shumeiko OO Probl Radiac Med Radiobiol; 2020 Dec; 25():362-373. PubMed ID: 33361847 [TBL] [Abstract][Full Text] [Related]
12. Changing concepts of diagnostic criteria of myeloproliferative disorders and the molecular etiology and classification of myeloproliferative neoplasms: from Dameshek 1950 to Vainchenker 2005 and beyond. Michiels JJ; Berneman Z; Schroyens W; De Raeve H Acta Haematol; 2015; 133(1):36-51. PubMed ID: 25116092 [TBL] [Abstract][Full Text] [Related]
13. Mutational subtypes of JAK2 and CALR correlate with different clinical features in Japanese patients with myeloproliferative neoplasms. Misawa K; Yasuda H; Araki M; Ochiai T; Morishita S; Shirane S; Edahiro Y; Gotoh A; Ohsaka A; Komatsu N Int J Hematol; 2018 Jun; 107(6):673-680. PubMed ID: 29464483 [TBL] [Abstract][Full Text] [Related]
14. Impact of Molecular Biology in Diagnosis, Prognosis, and Therapeutic Management of Abbou N; Piazzola P; Gabert J; Ernest V; Arcani R; Couderc AL; Tichadou A; Roche P; Farnault L; Colle J; Ouafik L; Morange P; Costello R; Venton G Cells; 2022 Dec; 12(1):. PubMed ID: 36611899 [No Abstract] [Full Text] [Related]
15. Coexisting JAK2V617F and CALR Exon 9 Mutations in Myeloproliferative Neoplasms - Do They Designate a New Subtype? Ahmed RZ; Rashid M; Ahmed N; Nadeem M; Shamsi TS Asian Pac J Cancer Prev; 2016; 17(3):923-6. PubMed ID: 27039813 [TBL] [Abstract][Full Text] [Related]
16. The Calreticulin gene and myeloproliferative neoplasms. Clinton A; McMullin MF J Clin Pathol; 2016 Oct; 69(10):841-5. PubMed ID: 27354406 [TBL] [Abstract][Full Text] [Related]
17. Immunoblotting-assisted assessment of JAK/STAT and PI3K/Akt/mTOR signaling in myeloproliferative neoplasms CD34+ stem cells. Calabresi L; Balliu M; Bartalucci N Methods Cell Biol; 2022; 171():81-109. PubMed ID: 35953207 [TBL] [Abstract][Full Text] [Related]
18. The different variant allele frequencies of type I/type II mutations and the distinct molecular landscapes in Pan Y; Wang X; Wen S; Liu X; Yang L; Luo J Hematology; 2022 Dec; 27(1):902-908. PubMed ID: 36000955 [TBL] [Abstract][Full Text] [Related]
19. Polycythemia vera and essential thrombocythemia: 2017 update on diagnosis, risk-stratification, and management. Tefferi A; Barbui T Am J Hematol; 2017 Jan; 92(1):94-108. PubMed ID: 27991718 [TBL] [Abstract][Full Text] [Related]
20. Detection of CALR Mutation in Clonal and Nonclonal Hematologic Diseases Using Fragment Analysis and Next-Generation Sequencing. Gardner JA; Peterson JD; Turner SA; Soares BL; Lancor CR; Dos Santos LL; Kaur P; Ornstein DL; Tsongalis GJ; de Abreu FB Am J Clin Pathol; 2016 Oct; 146(4):448-55. PubMed ID: 27686171 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]