BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 36499601)

  • 1. Induced Pluripotent Stem Cells and Genome-Editing Tools in Determining Gene Function and Therapy for Inherited Retinal Disorders.
    Benati D; Leung A; Perdigao P; Toulis V; van der Spuy J; Recchia A
    Int J Mol Sci; 2022 Dec; 23(23):. PubMed ID: 36499601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of CRISPR/Cas9 technologies combined with iPSCs in the study and treatment of retinal degenerative diseases.
    Cai B; Sun S; Li Z; Zhang X; Ke Y; Yang J; Li X
    Hum Genet; 2018 Sep; 137(9):679-688. PubMed ID: 30203114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene editing prospects for treating inherited retinal diseases.
    Benati D; Patrizi C; Recchia A
    J Med Genet; 2020 Jul; 57(7):437-444. PubMed ID: 31857428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR-Cas9 genome engineering: Treating inherited retinal degeneration.
    Burnight ER; Giacalone JC; Cooke JA; Thompson JR; Bohrer LR; Chirco KR; Drack AV; Fingert JH; Worthington KS; Wiley LA; Mullins RF; Stone EM; Tucker BA
    Prog Retin Eye Res; 2018 Jul; 65():28-49. PubMed ID: 29578069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using CRISPR-Cas9 to Generate Gene-Corrected Autologous iPSCs for the Treatment of Inherited Retinal Degeneration.
    Burnight ER; Gupta M; Wiley LA; Anfinson KR; Tran A; Triboulet R; Hoffmann JM; Klaahsen DL; Andorf JL; Jiao C; Sohn EH; Adur MK; Ross JW; Mullins RF; Daley GQ; Schlaeger TM; Stone EM; Tucker BA
    Mol Ther; 2017 Sep; 25(9):1999-2013. PubMed ID: 28619647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-Editing Strategies for Treating Human Retinal Degenerations.
    Quinn J; Musa A; Kantor A; McClements ME; Cehajic-Kapetanovic J; MacLaren RE; Xue K
    Hum Gene Ther; 2021 Mar; 32(5-6):247-259. PubMed ID: 32993386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene Therapy for Inherited Retinal Degeneration.
    Arbabi A; Liu A; Ameri H
    J Ocul Pharmacol Ther; 2019 Mar; 35(2):79-97. PubMed ID: 30688548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Patient-specific induced pluripotent stem cells (iPSCs) for the study and treatment of retinal degenerative diseases.
    Wiley LA; Burnight ER; Songstad AE; Drack AV; Mullins RF; Stone EM; Tucker BA
    Prog Retin Eye Res; 2015 Jan; 44():15-35. PubMed ID: 25448922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome Editing of Induced Pluripotent Stem Cells Using CRISPR/Cas9 Ribonucleoprotein Complexes to Model Genetic Ocular Diseases.
    Getachew H; Chinchilla B; Fernandez-Godino R
    Methods Mol Biol; 2022; 2549():321-334. PubMed ID: 34128206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Footprint-free gene mutation correction in induced pluripotent stem cell (iPSC) derived from recessive dystrophic epidermolysis bullosa (RDEB) using the CRISPR/Cas9 and piggyBac transposon system.
    Itoh M; Kawagoe S; Tamai K; Nakagawa H; Asahina A; Okano HJ
    J Dermatol Sci; 2020 Jun; 98(3):163-172. PubMed ID: 32376152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CGMP Compliant Microfluidic Transfection of Induced Pluripotent Stem Cells for CRISPR-Mediated Genome Editing.
    Bohrer LR; Stone NE; Wright AT; Han S; Sicher I; Sulchek TA; Mullins RF; Tucker BA
    Stem Cells; 2023 Nov; 41(11):1037-1046. PubMed ID: 37632456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of CRISPR/Cas ribonucleoproteins for high throughput gene editing of induced pluripotent stem cells.
    Wang Q; Chear S; Wing K; Stellon D; Nguyen Tran MT; Talbot J; Pébay A; Hewitt AW; Cook AL
    Methods; 2021 Oct; 194():18-29. PubMed ID: 33607266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Current researches and prospects of human induced pluripotent stem cells and gene editing technology of CRISPR/Cas9 in inherited ocular diseases].
    Fan F; Wu JH; Luo Y
    Zhonghua Yan Ke Za Zhi; 2021 Sep; 57(9):712-716. PubMed ID: 34865411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New Editing Tools for Gene Therapy in Inherited Retinal Dystrophies.
    Pulman J; Sahel JA; Dalkara D
    CRISPR J; 2022 Jun; 5(3):377-388. PubMed ID: 35506982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Future Perspectives of Prime Editing for the Treatment of Inherited Retinal Diseases.
    Hansen S; McClements ME; Corydon TJ; MacLaren RE
    Cells; 2023 Jan; 12(3):. PubMed ID: 36766782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR/Cas9 Genome Editing: A Promising Tool for Therapeutic Applications of Induced Pluripotent Stem Cells.
    Zhang Y; Sastre D; Wang F
    Curr Stem Cell Res Ther; 2018; 13(4):243-251. PubMed ID: 29446747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Guiding Lights in Genome Editing for Inherited Retinal Disorders: Implications for Gene and Cell Therapy.
    Sanjurjo-Soriano C; Kalatzis V
    Neural Plast; 2018; 2018():5056279. PubMed ID: 29853845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome Editing in Induced Pluripotent Stem Cells using CRISPR/Cas9.
    Ben Jehuda R; Shemer Y; Binah O
    Stem Cell Rev Rep; 2018 Jun; 14(3):323-336. PubMed ID: 29623532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoparticles-mediated CRISPR-Cas9 gene therapy in inherited retinal diseases: applications, challenges, and emerging opportunities.
    Chien Y; Hsiao YJ; Chou SJ; Lin TY; Yarmishyn AA; Lai WY; Lee MS; Lin YY; Lin TW; Hwang DK; Lin TC; Chiou SH; Chen SJ; Yang YP
    J Nanobiotechnology; 2022 Dec; 20(1):511. PubMed ID: 36463195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induced Pluripotent Stem Cells Meet Genome Editing.
    Hockemeyer D; Jaenisch R
    Cell Stem Cell; 2016 May; 18(5):573-86. PubMed ID: 27152442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.