These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

364 related articles for article (PubMed ID: 36499601)

  • 21. CRISPR/Cas9-A Promising Therapeutic Tool to Cure Blindness: Current Scenario and Future Prospects.
    Ahmad I
    Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232782
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A simple, quick, and efficient CRISPR/Cas9 genome editing method for human induced pluripotent stem cells.
    Geng BC; Choi KH; Wang SZ; Chen P; Pan XD; Dong NG; Ko JK; Zhu H
    Acta Pharmacol Sin; 2020 Nov; 41(11):1427-1432. PubMed ID: 32555510
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Induced pluripotent stem cells (iPSC)-derived retinal cells in disease modeling and regenerative medicine.
    Rathod R; Surendran H; Battu R; Desai J; Pal R
    J Chem Neuroanat; 2019 Jan; 95():81-88. PubMed ID: 29448001
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CRISPR-Cas9-Based Genome Editing of Human Induced Pluripotent Stem Cells.
    Giacalone JC; Sharma TP; Burnight ER; Fingert JF; Mullins RF; Stone EM; Tucker BA
    Curr Protoc Stem Cell Biol; 2018 Feb; 44():5B.7.1-5B.7.22. PubMed ID: 29512106
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Induced Pluripotent Stem Cells and CRISPR-Cas9 Innovations for Treating Alpha-1 Antitrypsin Deficiency and Glycogen Storage Diseases.
    Walsh C; Jin S
    Cells; 2024 Jun; 13(12):. PubMed ID: 38920680
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Targeted genome engineering in human induced pluripotent stem cells from patients with hemophilia B using the CRISPR-Cas9 system.
    Lyu C; Shen J; Wang R; Gu H; Zhang J; Xue F; Liu X; Liu W; Fu R; Zhang L; Li H; Zhang X; Cheng T; Yang R; Zhang L
    Stem Cell Res Ther; 2018 Apr; 9(1):92. PubMed ID: 29625575
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CRISPR-Cas9: a promising tool for gene editing on induced pluripotent stem cells.
    Kim EJ; Kang KH; Ju JH
    Korean J Intern Med; 2017 Jan; 32(1):42-61. PubMed ID: 28049282
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Potential of Gene Editing and Induced Pluripotent Stem Cells (iPSCs) in Treatment of Retinal Diseases.
    Chuang K; Fields MA; Del Priore LV
    Yale J Biol Med; 2017 Dec; 90(4):635-642. PubMed ID: 29259527
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Harnessing the Potential of Human Pluripotent Stem Cells and Gene Editing for the Treatment of Retinal Degeneration.
    Ovando-Roche P; Georgiadis A; Smith AJ; Pearson RA; Ali RR
    Curr Stem Cell Rep; 2017; 3(2):112-123. PubMed ID: 28596937
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genome editing, a superior therapy for inherited retinal diseases.
    Yan AL; Du SW; Palczewski K
    Vision Res; 2023 May; 206():108192. PubMed ID: 36804635
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gene Editing and Human Pluripotent Stem Cells: Tools for Advancing Diabetes Disease Modeling and Beta-Cell Development.
    Millette K; Georgia S
    Curr Diab Rep; 2017 Oct; 17(11):116. PubMed ID: 28980194
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Site-Specific Genome Engineering in Human Pluripotent Stem Cells.
    Merkert S; Martin U
    Int J Mol Sci; 2016 Jun; 17(7):. PubMed ID: 27347935
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Correction of NR2E3 Associated Enhanced S-cone Syndrome Patient-specific iPSCs using CRISPR-Cas9.
    Bohrer LR; Wiley LA; Burnight ER; Cooke JA; Giacalone JC; Anfinson KR; Andorf JL; Mullins RF; Stone EM; Tucker BA
    Genes (Basel); 2019 Apr; 10(4):. PubMed ID: 30959774
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genome Surgery and Gene Therapy in Retinal Disorders.
    Chan L; Mahajan VB; Tsang SH
    Yale J Biol Med; 2017 Dec; 90(4):523-532. PubMed ID: 29259518
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Determining the Pathogenicity of a Genomic Variant of Uncertain Significance Using CRISPR/Cas9 and Human-Induced Pluripotent Stem Cells.
    Ma N; Zhang JZ; Itzhaki I; Zhang SL; Chen H; Haddad F; Kitani T; Wilson KD; Tian L; Shrestha R; Wu H; Lam CK; Sayed N; Wu JC
    Circulation; 2018 Dec; 138(23):2666-2681. PubMed ID: 29914921
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Targeted gene therapy in human-induced pluripotent stem cells from a patient with primary hyperoxaluria type 1 using CRISPR/Cas9 technology.
    Estève J; Blouin JM; Lalanne M; Azzi-Martin L; Dubus P; Bidet A; Harambat J; Llanas B; Moranvillier I; Bedel A; Moreau-Gaudry F; Richard E
    Biochem Biophys Res Commun; 2019 Oct; 517(4):677-683. PubMed ID: 31402115
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Next Generation of Molecular and Cellular Therapeutics for Inherited Retinal Disease.
    Martinez Velazquez LA; Ballios BG
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34768969
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Advancements in pre-clinical development of gene editing-based therapies to treat inherited retinal diseases.
    Chirco KR; Martinez C; Lamba DA
    Vision Res; 2023 Aug; 209():108257. PubMed ID: 37210864
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gene and epigenetic editing in the treatment of primary ciliopathies.
    Molinari E; Sayer JA
    Prog Mol Biol Transl Sci; 2021; 182():353-401. PubMed ID: 34175048
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CRISPR/Cas9-mediated gene correction in hemophilia B patient-derived iPSCs.
    Morishige S; Mizuno S; Ozawa H; Nakamura T; Mazahery A; Nomura K; Seki R; Mouri F; Osaki K; Yamamura K; Okamura T; Nagafuji K
    Int J Hematol; 2020 Feb; 111(2):225-233. PubMed ID: 31664646
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.