BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 36499641)

  • 1. Longevity-Associated Variant of BPIFB4 Confers Neuroprotection in the STHdh Cell Model of Huntington Disease.
    Cattaneo M; Maciag A; Milella MS; Ciaglia E; Bruno A; Puca AA
    Int J Mol Sci; 2022 Dec; 23(23):. PubMed ID: 36499641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The longevity-associated variant of BPIFB4 improves a CXCR4-mediated striatum-microglia crosstalk preventing disease progression in a mouse model of Huntington's disease.
    Di Pardo A; Ciaglia E; Cattaneo M; Maciag A; Montella F; Lopardo V; Ferrario A; Villa F; Madonna M; Amico E; Carrizzo A; Damato A; Pepe G; Marracino F; Auricchio A; Vecchione C; Maglione V; Puca AA
    Cell Death Dis; 2020 Jul; 11(7):546. PubMed ID: 32683420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential proteomic and genomic profiling of mouse striatal cell model of Huntington's disease and control; probable implications to the disease biology.
    Choudhury KR; Das S; Bhattacharyya NP
    J Proteomics; 2016 Jan; 132():155-66. PubMed ID: 26581643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impaired mitochondrial dynamics and Nrf2 signaling contribute to compromised responses to oxidative stress in striatal cells expressing full-length mutant huntingtin.
    Jin YN; Yu YV; Gundemir S; Jo C; Cui M; Tieu K; Johnson GV
    PLoS One; 2013; 8(3):e57932. PubMed ID: 23469253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased expression of Bim contributes to the potentiation of serum deprivation-induced apoptotic cell death in Huntington's disease knock-in striatal cell line.
    Kong PJ; Kil MO; Lee H; Kim SS; Johnson GV; Chun W
    Neurol Res; 2009 Feb; 31(1):77-83. PubMed ID: 18691453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Twist1 Plays an Anti-apoptotic Role in Mutant Huntingtin Expression Striatal Progenitor Cells.
    Jen WP; Chen HM; Lin YS; Chern Y; Lee YC
    Mol Neurobiol; 2020 Mar; 57(3):1688-1703. PubMed ID: 31813126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased 90-kDa ribosomal S6 kinase (Rsk) activity is protective against mutant huntingtin toxicity.
    Xifró X; Anglada-Huguet M; Rué L; Saavedra A; Pérez-Navarro E; Alberch J
    Mol Neurodegener; 2011 Oct; 6():74. PubMed ID: 22041125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Delayed Cell Cycle Progression in STHdh(Q111)/Hdh(Q111) Cells, a Cell Model for Huntington's Disease Mediated by microRNA-19a, microRNA-146a and microRNA-432.
    Das E; Jana NR; Bhattacharyya NP
    Microrna; 2015; 4(2):86-100. PubMed ID: 26165466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of p38 Mitogen-Activated Protein Kinase Ameliorates HAP40 Depletion-Induced Toxicity and Proteasomal Defect in Huntington's Disease Model.
    Huang ZN; Chen JM; Huang LC; Fang YH; Her LS
    Mol Neurobiol; 2021 Jun; 58(6):2704-2723. PubMed ID: 33492644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of Elk-1 participates as a neuroprotective compensatory mechanism in models of Huntington's disease.
    Anglada-Huguet M; Giralt A; Perez-Navarro E; Alberch J; Xifró X
    J Neurochem; 2012 May; 121(4):639-48. PubMed ID: 22372926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dysregulation of system xc(-) expression induced by mutant huntingtin in a striatal neuronal cell line and in R6/2 mice.
    Frederick NM; Bertho J; Patel KK; Petr GT; Bakradze E; Smith SB; Rosenberg PA
    Neurochem Int; 2014 Oct; 76():59-69. PubMed ID: 25004085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MicroRNA-124 targets CCNA2 and regulates cell cycle in STHdh(Q111)/Hdh(Q111) cells.
    Das E; Jana NR; Bhattacharyya NP
    Biochem Biophys Res Commun; 2013 Jul; 437(2):217-24. PubMed ID: 23796713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The common inhaled anesthetic isoflurane increases aggregation of huntingtin and alters calcium homeostasis in a cell model of Huntington's disease.
    Wang Q; Liang G; Yang H; Wang S; Eckenhoff MF; Wei H
    Toxicol Appl Pharmacol; 2011 Feb; 250(3):291-8. PubMed ID: 21059370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of nuclear REST by alternative splicing: a potential therapeutic target for Huntington's disease.
    Chen GL; Ma Q; Goswami D; Shang J; Miller GM
    J Cell Mol Med; 2017 Nov; 21(11):2974-2984. PubMed ID: 28524599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleolar stress controls mutant Huntington toxicity and monitors Huntington's disease progression.
    Sönmez A; Mustafa R; Ryll ST; Tuorto F; Wacheul L; Ponti D; Litke C; Hering T; Kojer K; Koch J; Pitzer C; Kirsch J; Neueder A; Kreiner G; Lafontaine DLJ; Orth M; Liss B; Parlato R
    Cell Death Dis; 2021 Dec; 12(12):1139. PubMed ID: 34880223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Defective Mitochondrial Dynamics and Protein Degradation Pathways Underlie Cadmium-Induced Neurotoxicity and Cell Death in Huntington's Disease Striatal Cells.
    Kamitsuka PJ; Ghanem MM; Ziar R; McDonald SE; Thomas MG; Kwakye GF
    Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of miR-146a by RelA/NFkB and p53 in STHdh(Q111)/Hdh(Q111) cells, a cell model of Huntington's disease.
    Ghose J; Sinha M; Das E; Jana NR; Bhattacharyya NP
    PLoS One; 2011; 6(8):e23837. PubMed ID: 21887328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Exogenous NUB1 Expression in the Striatum of HDQ175/Q7 Mice.
    Vodicka P; Chase K; Iuliano M; Valentine DT; Sapp E; Lu B; Kegel-Gleason KB; Sena-Esteves M; Aronin N; DiFiglia M
    J Huntingtons Dis; 2016 Jun; 5(2):163-74. PubMed ID: 27314618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AMPK-α1 functions downstream of oxidative stress to mediate neuronal atrophy in Huntington's disease.
    Ju TC; Chen HM; Chen YC; Chang CP; Chang C; Chern Y
    Biochim Biophys Acta; 2014 Sep; 1842(9):1668-80. PubMed ID: 24946181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic state determines sensitivity to cellular stress in Huntington disease: normalization by activation of PPARγ.
    Jin YN; Hwang WY; Jo C; Johnson GV
    PLoS One; 2012; 7(1):e30406. PubMed ID: 22276192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.