BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 36499668)

  • 1. Synthesis of Silver Nanoparticles and Detection of Glucose via Chemical Reduction with Nanocellulose as Carrier and Stabilizer.
    Zhang Z; Yang G; He M; Qi L; Li X; Chen J
    Int J Mol Sci; 2022 Dec; 23(23):. PubMed ID: 36499668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of different conditions of synthesis on properties of silver nanoparticles stabilized by nanocellulose from carrot pomace.
    Cieśla J; Chylińska M; Zdunek A; Szymańska-Chargot M
    Carbohydr Polym; 2020 Oct; 245():116513. PubMed ID: 32718623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative study on synthesis of AgNPs on cellulose nanofibers by thermal treatment and DMF for antibacterial activities.
    Jatoi AW; Kim IS; Ni QQ
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():1179-1195. PubMed ID: 30813001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tannic acid-mediated green synthesis of antibacterial silver nanoparticles.
    Kim TY; Cha SH; Cho S; Park Y
    Arch Pharm Res; 2016 Apr; 39(4):465-473. PubMed ID: 26895244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antibacterial composite paper with corn stalk-based carbon spheres immobilized AgNPs.
    Jiang Q; Luo B; Wu Z; Wang X
    Mater Sci Eng C Mater Biol Appl; 2020 Aug; 113():111012. PubMed ID: 32487414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antibacterial activity of silver nanoparticles synthesized In-situ by solution spraying onto cellulose.
    Yan J; Abdelgawad AM; El-Naggar ME; Rojas OJ
    Carbohydr Polym; 2016 Aug; 147():500-508. PubMed ID: 27178957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ synthesis of silver nanoparticles with controllable size distribution and high content in bagasse nanocellulose hydrogel.
    Jiang J; Ke M; Zhang L; Zhang W; Dong W
    Int J Biol Macromol; 2023 Dec; 253(Pt 7):127259. PubMed ID: 37802436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Properties of novel polyvinyl alcohol/cellulose nanocrystals/silver nanoparticles blend membranes.
    Xu X; Yang YQ; Xing YY; Yang JF; Wang SF
    Carbohydr Polym; 2013 Nov; 98(2):1573-7. PubMed ID: 24053842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanocrystalline Cellulose-Assisted Generation of Silver Nanoparticles for Nonenzymatic Glucose Detection and Antibacterial Agent.
    Wang S; Sun J; Jia Y; Yang L; Wang N; Xianyu Y; Chen W; Li X; Cha R; Jiang X
    Biomacromolecules; 2016 Jul; 17(7):2472-8. PubMed ID: 27333073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid nanocellulose decorated with silver nanoparticles as reinforcing filler with antibacterial properties.
    Errokh A; Magnin A; Putaux JL; Boufi S
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110044. PubMed ID: 31546437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of cellulose-based wipes treated with antimicrobial and antiviral silver nanoparticles as novel effective high-performance coronavirus fighter.
    Hamouda T; Ibrahim HM; Kafafy HH; Mashaly HM; Mohamed NH; Aly NM
    Int J Biol Macromol; 2021 Jun; 181():990-1002. PubMed ID: 33864870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biological synthesis of silver nanoparticles using β-1, 3 glucan binding protein and their antibacterial, antibiofilm and cytotoxic potential.
    Anjugam M; Vaseeharan B; Iswarya A; Divya M; Prabhu NM; Sankaranarayanan K
    Microb Pathog; 2018 Feb; 115():31-40. PubMed ID: 29208541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional bacterial cellulose nanofibrils with silver nanoparticles and its antibacterial application.
    Zeng A; Yang R; Tong Y; Zhao W
    Int J Biol Macromol; 2023 Apr; 235():123739. PubMed ID: 36806768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of cellulose nanofibril bound silver nanoprism for surface enhanced Raman scattering.
    Jiang F; Hsieh YL
    Biomacromolecules; 2014 Oct; 15(10):3608-16. PubMed ID: 25189757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eco-Friendly and Facile Synthesis of Antioxidant, Antibacterial and Anticancer Dihydromyricetin-Mediated Silver Nanoparticles.
    Li Z; Ali I; Qiu J; Zhao H; Ma W; Bai A; Wang D; Li J
    Int J Nanomedicine; 2021; 16():481-492. PubMed ID: 33500618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Marine plant mediated green synthesis of silver nanoparticles using mangrove
    Willian N; Syukri S; Zulhadjri Z; Pardi H; Arief S
    F1000Res; 2021; 10():768. PubMed ID: 37359252
    [No Abstract]   [Full Text] [Related]  

  • 17. Silver nanoparticles fabricated by reducing property of cellulose derivatives.
    Suwan T; Khongkhunthian S; Okonogi S
    Drug Discov Ther; 2019; 13(2):70-79. PubMed ID: 31080206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybridization between cellulose nanofibrils and faceted silver nanoparticles used with surface enhanced Raman scattering for trace dye detection.
    Gu J; Dichiara A
    Int J Biol Macromol; 2020 Jan; 143():85-92. PubMed ID: 31811848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Green synthesis of silver nanoparticles using turmeric extracts and investigation of their antibacterial activities.
    Alsammarraie FK; Wang W; Zhou P; Mustapha A; Lin M
    Colloids Surf B Biointerfaces; 2018 Nov; 171():398-405. PubMed ID: 30071481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solar radiation-induced synthesis of bacterial cellulose/silver nanoparticles (BC/AgNPs) composite using BC as reducing and capping agent.
    El-Sherbiny GM; Abou El-Nour SA; Askar AA; Mohammad NH; Hammad AA
    Bioprocess Biosyst Eng; 2022 Feb; 45(2):257-268. PubMed ID: 34665338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.