These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 36499703)

  • 1. Developing Antibiofilm Fibrillar Scaffold with Intrinsic Capacity to Produce Silver Nanoparticles.
    Pitarresi G; Barberi G; Palumbo FS; Schillaci D; Fiorica C; Catania V; Indelicato S; Bongiorno D; Biscari G; Giammona G
    Int J Mol Sci; 2022 Dec; 23(23):. PubMed ID: 36499703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antibiofilm properties of chemically synthesized silver nanoparticles found against Pseudomonas aeruginosa.
    Palanisamy NK; Ferina N; Amirulhusni AN; Mohd-Zain Z; Hussaini J; Ping LJ; Durairaj R
    J Nanobiotechnology; 2014 Jan; 12():2. PubMed ID: 24422704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antibacterial and antibiofilm potential of silver nanoparticles against antibiotic-sensitive and multidrug-resistant Pseudomonas aeruginosa strains.
    de Lacerda Coriolano D; de Souza JB; Bueno EV; Medeiros SMFRDS; Cavalcanti IDL; Cavalcanti IMF
    Braz J Microbiol; 2021 Mar; 52(1):267-278. PubMed ID: 33231865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosurfactant coated silver and iron oxide nanoparticles with enhanced anti-biofilm and anti-adhesive properties.
    Khalid HF; Tehseen B; Sarwar Y; Hussain SZ; Khan WS; Raza ZA; Bajwa SZ; Kanaras AG; Hussain I; Rehman A
    J Hazard Mater; 2019 Feb; 364():441-448. PubMed ID: 30384254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surfactin-Conjugated Silver Nanoparticles as an Antibacterial and Antibiofilm Agent against
    Rahman L; Sarwar Y; Khaliq S; Inayatullah ; Abbas W; Mobeen A; Ullah A; Hussain SZ; Khan WS; Kyriazi ME; Hussain I; Kanaras AG; Rehman A
    ACS Appl Mater Interfaces; 2023 Sep; 15(37):43321-43331. PubMed ID: 37668507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superior Bactericidal Efficacy of Fucose-Functionalized Silver Nanoparticles against Pseudomonas aeruginosa PAO1 and Prevention of Its Colonization on Urinary Catheters.
    Bhargava A; Pareek V; Roy Choudhury S; Panwar J; Karmakar S
    ACS Appl Mater Interfaces; 2018 Sep; 10(35):29325-29337. PubMed ID: 30096228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Attenuation of Pseudomonas aeruginosa biofilm by thymoquinone: an individual and combinatorial study with tetrazine-capped silver nanoparticles and tryptophan.
    Chakraborty P; Paul P; Kumari M; Bhattacharjee S; Singh M; Maiti D; Dastidar DG; Akhter Y; Kundu T; Das A; Tribedi P
    Folia Microbiol (Praha); 2021 Apr; 66(2):255-271. PubMed ID: 33411249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological synthesis of silver nanoparticles using β-1, 3 glucan binding protein and their antibacterial, antibiofilm and cytotoxic potential.
    Anjugam M; Vaseeharan B; Iswarya A; Divya M; Prabhu NM; Sankaranarayanan K
    Microb Pathog; 2018 Feb; 115():31-40. PubMed ID: 29208541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anti-biofilm effects of gold and silver nanoparticles synthesized by the Rhodiola rosea rhizome extracts.
    Singh P; Pandit S; Beshay M; Mokkapati VRSS; Garnaes J; Olsson ME; Sultan A; Mackevica A; Mateiu RV; Lütken H; Daugaard AE; Baun A; Mijakovic I
    Artif Cells Nanomed Biotechnol; 2018; 46(sup3):S886-S899. PubMed ID: 30422688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3,6-Di(pyridin-2-yl)-1,2,4,5-tetrazine (pytz)-capped silver nanoparticles (TzAgNPs) inhibit biofilm formation of Pseudomonas aeruginosa: a potential approach toward breaking the wall of biofilm through reactive oxygen species (ROS) generation.
    Chakraborty P; Joardar S; Ray S; Biswas P; Maiti D; Tribedi P
    Folia Microbiol (Praha); 2018 Nov; 63(6):763-772. PubMed ID: 29855854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biophysical properties of electrospun chitosan-grafted poly(lactic acid) nanofibrous scaffolds loaded with chondroitin sulfate and silver nanoparticles.
    Júnior AF; Ribeiro CA; Leyva ME; Marques PS; Soares CRJ; Alencar de Queiroz AA
    J Biomater Appl; 2022 Jan; 36(6):1098-1110. PubMed ID: 34601887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antibacterial Electrospun Polycaprolactone Membranes Coated with Polysaccharides and Silver Nanoparticles for Guided Bone and Tissue Regeneration.
    Porrelli D; Mardirossian M; Musciacchio L; Pacor M; Berton F; Crosera M; Turco G
    ACS Appl Mater Interfaces; 2021 Apr; 13(15):17255-17267. PubMed ID: 33822574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Green synthesis of silver nanoparticles using Carum copticum: Assessment of its quorum sensing and biofilm inhibitory potential against gram negative bacterial pathogens.
    Qais FA; Shafiq A; Ahmad I; Husain FM; Khan RA; Hassan I
    Microb Pathog; 2020 Jul; 144():104172. PubMed ID: 32224208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antibiofilm activity of a monolayer of silver nanoparticles anchored to an amino-silanized glass surface.
    Taglietti A; Arciola CR; D'Agostino A; Dacarro G; Montanaro L; Campoccia D; Cucca L; Vercellino M; Poggi A; Pallavicini P; Visai L
    Biomaterials; 2014 Feb; 35(6):1779-88. PubMed ID: 24315574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anti-adhesion and antibacterial activity of silver nanoparticles supported on graphene oxide sheets.
    de Faria AF; Martinez DS; Meira SM; de Moraes AC; Brandelli A; Filho AG; Alves OL
    Colloids Surf B Biointerfaces; 2014 Jan; 113():115-24. PubMed ID: 24060936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Comparative Analysis of Antimicrobial, Antibiofilm and Antioxidant Activity of Silver Nanoparticles Synthesized from Erythrina Suberosa Roxb. and Ceiba Pentandra.
    Afzal S; Qurashi AW; Sarfraz B; Liaqat I; Sadiqa A; Muhtaq M; Andleeb S; Ahsan F
    J Oleo Sci; 2022; 71(4):523-533. PubMed ID: 35370214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New dynamic microreactor system to mimic biofilm formation and test anti-biofilm activity of nanoparticles.
    Bourguignon N; Kamat V; Perez M; Mathee K; Lerner B; Bhansali S
    Appl Microbiol Biotechnol; 2022 Apr; 106(7):2729-2738. PubMed ID: 35325273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of Antibiofilm Nanocomposites: Ag/Cu Bimetallic Nanoparticles Synthesized on the Surface of Graphene Oxide Nanosheets.
    Jang J; Lee JM; Oh SB; Choi Y; Jung HS; Choi J
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):35826-35834. PubMed ID: 32667802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biogenic synthesis of silver nanoparticles using Piper betle aqueous extract and evaluation of its anti-quorum sensing and antibiofilm potential against uropathogens with cytotoxic effects: an in vitro and in vivo approach.
    Srinivasan R; Vigneshwari L; Rajavel T; Durgadevi R; Kannappan A; Balamurugan K; Pandima Devi K; Veera Ravi A
    Environ Sci Pollut Res Int; 2018 Apr; 25(11):10538-10554. PubMed ID: 29288300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antimicrobial and physicomechanical natures of silver nanoparticles incorporated into silicone-hydrogel films.
    Mourad R; Helaly F; Darwesh O; Sawy SE
    Cont Lens Anterior Eye; 2019 Jun; 42(3):325-333. PubMed ID: 30827719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.