These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 36499795)
1. A Novel Design Concept of Cemented Paste Backfill (CPB) Materials: Biobjective Optimization Approach by Applying an Evolved Random Forest Model. He Y; Cheng Y; Ma M; Li F; Song Y; Liu L; Wang X; Huang J Materials (Basel); 2022 Nov; 15(23):. PubMed ID: 36499795 [TBL] [Abstract][Full Text] [Related]
2. Strength prediction and application of cemented paste backfill based on machine learning and strength correction. Zhang B; Li K; Zhang S; Hu Y; Han B Heliyon; 2022 Aug; 8(8):e10338. PubMed ID: 36061035 [TBL] [Abstract][Full Text] [Related]
3. Strength development and self-desiccation of saline cemented paste backfill. Carnogursky EA; Fall M; Haruna S Environ Sci Pollut Res Int; 2024 Feb; 31(10):14894-14911. PubMed ID: 38286929 [TBL] [Abstract][Full Text] [Related]
4. Compressive Strength Prediction of Cemented Backfill Containing Phosphate Tailings Using Extreme Gradient Boosting Optimized by Whale Optimization Algorithm. Xiong S; Liu Z; Min C; Shi Y; Zhang S; Liu W Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614647 [TBL] [Abstract][Full Text] [Related]
5. Assessment of strength properties of cemented paste backfill by ultrasonic pulse velocity test. Yılmaz T; Ercikdi B; Karaman K; Külekçi G Ultrasonics; 2014 Jul; 54(5):1386-94. PubMed ID: 24602334 [TBL] [Abstract][Full Text] [Related]
6. Strength Development Monitoring of Cemented Paste Backfill Using Guided Waves. He W; Zheng C; Li S; Shi W; Zhao K Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960591 [TBL] [Abstract][Full Text] [Related]
7. Fiber-Reinforced Cemented Paste Backfill: The Effect of Fiber on Strength Properties and Estimation of Strength Using Nonlinear Models. Chen X; Shi X; Zhang S; Chen H; Zhou J; Yu Z; Huang P Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32033388 [TBL] [Abstract][Full Text] [Related]
8. A Support Vector Machine and Particle Swarm Optimization Based Model for Cemented Tailings Backfill Materials Strength Prediction. Yu Z; Wang Y; Wang Y Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329578 [TBL] [Abstract][Full Text] [Related]
9. Ultrasonic evaluation of strength properties of cemented paste backfill: Effects of mineral admixture and curing temperature. Jiang H; Yi H; Yilmaz E; Liu S; Qiu J Ultrasonics; 2020 Jan; 100():105983. PubMed ID: 31479971 [TBL] [Abstract][Full Text] [Related]
10. The rheological, mechanical and heavy metal leaching properties of cemented paste backfill under the influence of anionic polyacrylamide. Chen Q; Tao Y; Zhang Q; Qi C Chemosphere; 2022 Jan; 286(Pt 1):131630. PubMed ID: 34315071 [TBL] [Abstract][Full Text] [Related]
11. Intelligent Design of Building Materials: Development of an AI-Based Method for Cement-Slag Concrete Design. Zhu F; Wu X; Zhou M; Sabri MMS; Huang J Materials (Basel); 2022 May; 15(11):. PubMed ID: 35683131 [TBL] [Abstract][Full Text] [Related]
12. Microscopic characterization and strength characteristics of cemented backfill under different humidity curing conditions. Hu J; Zhao F; Ren Q; Kuang Y; Zhou T; Luo Z R Soc Open Sci; 2019 Dec; 6(12):191227. PubMed ID: 31903208 [TBL] [Abstract][Full Text] [Related]
13. Strength and ultrasonic properties of cemented paste backfill. Ercikdi B; Yılmaz T; Külekci G Ultrasonics; 2014 Jan; 54(1):195-204. PubMed ID: 23706262 [TBL] [Abstract][Full Text] [Related]
14. Utilisation of construction and demolition waste as cemented paste backfill material for underground mine openings. Yılmaz T; Ercikdi B; Deveci H J Environ Manage; 2018 Sep; 222():250-259. PubMed ID: 29859465 [TBL] [Abstract][Full Text] [Related]
15. Effect of overflow tailings properties on cemented paste backfill. Chen X; Shi X; Zhou J; Du X; Chen Q; Qiu X J Environ Manage; 2019 Apr; 235():133-144. PubMed ID: 30682665 [TBL] [Abstract][Full Text] [Related]
16. The carbon uptake and mechanical property of cemented paste backfill carbonation curing for low concentration of CO Chen Q; Zhu L; Wang Y; Chen J; Qi C Sci Total Environ; 2022 Dec; 852():158516. PubMed ID: 36063952 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of rheological and mechanical performance of gangue-based cemented backfill material: a novel hybrid machine learning approach. Shi P; Zhang Y; Yan H; Zhang J; Gao D; Wang W Environ Sci Pollut Res Int; 2023 Apr; 30(19):55699-55715. PubMed ID: 36897447 [TBL] [Abstract][Full Text] [Related]
18. Production of a new type of cemented paste backfill with solid waste from carbide slag, soda residue, and red mud: mechanism, optimization, and its environmental effects. Li B; Sun Q; Liu Z; Tan Y Environ Sci Pollut Res Int; 2023 Sep; 30(43):96660-96677. PubMed ID: 37578582 [TBL] [Abstract][Full Text] [Related]
19. Preparation of a New Type of Cemented Paste Backfill with an Alkali-Activated Silica Fume and Slag Composite Binder. Sun Q; Li T; Liang B Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31941130 [TBL] [Abstract][Full Text] [Related]
20. Effect of wetting-drying cycle on hydraulic and mechanical properties of cemented paste backfill of the recycled solid wastes. Ma D; Kong S; Li Z; Zhang Q; Wang Z; Zhou Z Chemosphere; 2021 Nov; 282():131163. PubMed ID: 34470177 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]