These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 36499910)
1. Explicit Thermal Resistance Model of Self-Heating Effects of AlGaN/GaN HEMTs with Linear and Non-Linear Thermal Conductivity. Chakraborty S; Amir W; Shin JW; Shin KY; Cho CY; Kim JM; Hoshi T; Tsutsumi T; Sugiyama H; Matsuzaki H; Kwon HM; Kim DH; Kim TW Materials (Basel); 2022 Nov; 15(23):. PubMed ID: 36499910 [TBL] [Abstract][Full Text] [Related]
2. Thermal Analysis and Operational Characteristics of an AlGaN/GaN High Electron Mobility Transistor with Copper-Filled Structures: A Simulation Study. Jang KW; Hwang IT; Kim HJ; Lee SH; Lim JW; Kim HS Micromachines (Basel); 2019 Dec; 11(1):. PubMed ID: 31906083 [TBL] [Abstract][Full Text] [Related]
3. High Thermal Dissipation of Normally off p-GaN Gate AlGaN/GaN HEMTs on 6-Inch N-Doped Low-Resistivity SiC Substrate. Huang YC; Chiu HC; Kao HL; Wang HC; Liu CH; Huang CR; Chen SW Micromachines (Basel); 2021 May; 12(5):. PubMed ID: 34062908 [TBL] [Abstract][Full Text] [Related]
4. Transient Simulation for the Thermal Design Optimization of Pulse Operated AlGaN/GaN HEMTs. Guo H; Chen T; Shi S Micromachines (Basel); 2020 Jan; 11(1):. PubMed ID: 31936651 [TBL] [Abstract][Full Text] [Related]
5. Thermal Behavior of an AlGaN/GaN-Based Schottky Barrier Diode on Diamond and Silicon Substrates. Kim ZS; Lee HS; Bae SB; Ahn H; Lee SH; Lim JW; Kang DM J Nanosci Nanotechnol; 2021 Aug; 21(8):4429-4433. PubMed ID: 33714339 [TBL] [Abstract][Full Text] [Related]
6. Thermal Properties of Schottky Barrier Diode on AlGaN/GaN Heterostructures on Chemical Vapor Deposition Diamond. Kim ZS; Lee HS; Bae SB; Nam E; Lim JW J Nanosci Nanotechnol; 2019 Oct; 19(10):6119-6122. PubMed ID: 31026919 [TBL] [Abstract][Full Text] [Related]
7. An Improved Large Signal Model for 0.1 μm AlGaN/GaN High Electron Mobility Transistors (HEMTs) Process and Its Applications in Practical Monolithic Microwave Integrated Circuit (MMIC) Design in W band. Li J; Mao S; Xu Y; Zhao X; Wang W; Guo F; Zhang Q; Wu Y; Zhang B; Chen T; Yan B; Xu R; Li Y Micromachines (Basel); 2018 Aug; 9(8):. PubMed ID: 30424329 [TBL] [Abstract][Full Text] [Related]
8. High Thermal Stability and Low Thermal Resistance of Large Area GaN/3C-SiC/Diamond Junctions for Practical Device Processes. Kagawa R; Cheng Z; Kawamura K; Ohno Y; Moriyama C; Sakaida Y; Ouchi S; Uratani H; Inoue K; Nagai Y; Shigekawa N; Liang J Small; 2024 Mar; 20(13):e2305574. PubMed ID: 37964293 [TBL] [Abstract][Full Text] [Related]
9. Crystalline Interlayers for Reducing the Effective Thermal Boundary Resistance in GaN-on-Diamond. Field DE; Cuenca JA; Smith M; Fairclough SM; Massabuau FC; Pomeroy JW; Williams O; Oliver RA; Thayne I; Kuball M ACS Appl Mater Interfaces; 2020 Dec; 12(48):54138-54145. PubMed ID: 33196180 [TBL] [Abstract][Full Text] [Related]
10. Thermal Performance Improvement of AlGaN/GaN HEMTs Using Nanocrystalline Diamond Capping Layers. Guo H; Li Y; Yu X; Zhou J; Kong Y Micromachines (Basel); 2022 Sep; 13(9):. PubMed ID: 36144109 [TBL] [Abstract][Full Text] [Related]
11. DC Characteristics of AlGaN/GaN HEMTs Using a Dual-Gate Structure. Hong S; Rana Au; Heo JW; Kim HS J Nanosci Nanotechnol; 2015 Oct; 15(10):7467-71. PubMed ID: 26726352 [TBL] [Abstract][Full Text] [Related]
12. Electrical and Thermal Characteristics of AlGaN/GaN HEMT Devices with Dual Metal Gate Structure: A Theoretical Investigation. Qu Y; Deng N; Yuan Y; Hu W; Liu H; Wu S; Wang H Materials (Basel); 2022 May; 15(11):. PubMed ID: 35683115 [TBL] [Abstract][Full Text] [Related]
13. Effects of Thermal Boundary Resistance on Thermal Management of Gallium-Nitride-Based Semiconductor Devices: A Review. Zhan T; Xu M; Cao Z; Zheng C; Kurita H; Narita F; Wu YJ; Xu Y; Wang H; Song M; Wang W; Zhou Y; Liu X; Shi Y; Jia Y; Guan S; Hanajiri T; Maekawa T; Okino A; Watanabe T Micromachines (Basel); 2023 Nov; 14(11):. PubMed ID: 38004933 [TBL] [Abstract][Full Text] [Related]
14. Comparative analysis of nano-scale structural and electrical properties in AlGaN/GaN high electron mobility transistors on SiC and sapphire substrates. Wang C; Cho SJ; Kim NY J Nanosci Nanotechnol; 2013 Oct; 13(10):7083-8. PubMed ID: 24245197 [TBL] [Abstract][Full Text] [Related]
15. Effects of Recessed-Gate Structure on AlGaN/GaN-on-SiC MIS-HEMTs with Thin AlO Kim HS; Kang MJ; Kim JJ; Seo KS; Cha HY Materials (Basel); 2020 Mar; 13(7):. PubMed ID: 32230767 [TBL] [Abstract][Full Text] [Related]
16. Improvement of AlGaN/GaN HEMTs Linearity Using Etched-Fin Gate Structure for Ka Band Applications. Lee MW; Lin YC; Hsu HT; Gamiz F; Chang EY Micromachines (Basel); 2023 Apr; 14(5):. PubMed ID: 37241557 [TBL] [Abstract][Full Text] [Related]
17. Characteristic Analysis of AlGaN/GaN HEMT with Composited Buffer Layer on High-Heat Dissipation Poly-AlN Substrates. Huang CR; Chiu HC; Liu CH; Wang HC; Kao HL; Chen CT; Chang KJ Membranes (Basel); 2021 Oct; 11(11):. PubMed ID: 34832077 [TBL] [Abstract][Full Text] [Related]
18. A Novel Step-Doped Channel AlGaN/GaN HEMTs with Improved Breakdown Performance. Liu J; Guo Y; Zhang J; Yao J; Li M; Zhang M; Chen J; Huang X; Huang C Micromachines (Basel); 2021 Oct; 12(10):. PubMed ID: 34683299 [TBL] [Abstract][Full Text] [Related]
19. Transferrable AlGaN/GaN High-Electron Mobility Transistors to Arbitrary Substrates via a Two-Dimensional Boron Nitride Release Layer. Motala MJ; Blanton EW; Hilton A; Heller E; Muratore C; Burzynski K; Brown JL; Chabak K; Durstock M; Snure M; Glavin NR ACS Appl Mater Interfaces; 2020 May; 12(19):21837-21844. PubMed ID: 32295338 [TBL] [Abstract][Full Text] [Related]
20. Charging Effect by Fluorine-Treatment and Recess Gate for Enhancement-Mode on AlGaN/GaN High Electron Mobility Transistors. Kang SC; Jung HW; Chang SJ; Kim SM; Lee SK; Lee BH; Kim H; Noh YS; Lee SH; Kim SI; Ahn HK; Lim JW Nanomaterials (Basel); 2020 Oct; 10(11):. PubMed ID: 33114425 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]