These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 36499989)

  • 1. The Discrepancy between Coal Ash from Muffle, Circulating Fluidized Bed (CFB), and Pulverized Coal (PC) Furnaces, with a Focus on the Recovery of Iron and Rare Earth Elements.
    Pan J; Long X; Zhang L; Shoppert A; Valeev D; Zhou C; Liu X
    Materials (Basel); 2022 Nov; 15(23):. PubMed ID: 36499989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potentially toxic elements in fly ash dependently of applied technology of hard coal combustion.
    Smolka-Danielowska D; Fiedor D
    Environ Sci Pollut Res Int; 2018 Sep; 25(25):25091-25097. PubMed ID: 29938326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combustibility analysis of high-carbon fine slags from an entrained flow gasifier.
    Dai G; Zheng S; Wang X; Bai Y; Dong Y; Du J; Sun X; Tan H
    J Environ Manage; 2020 Oct; 271():111009. PubMed ID: 32778293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enrichment and occurrence form of rare earth elements during coal and coal gangue combustion.
    Wu G; Shi N; Wang T; Cheng CM; Wang J; Tian C; Pan WP
    Environ Sci Pollut Res Int; 2022 Jun; 29(29):44709-44722. PubMed ID: 35133594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ash deposition behavior of a high-alkali coal in circulating fluidized bed combustion at different bed temperatures and the effect of kaolin.
    Liu Y; Cheng L; Ji J; Wang Q; Fang M
    RSC Adv; 2018 Sep; 8(59):33817-33827. PubMed ID: 35548841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of carbon residues structures on burnout characteristic by FTIR and Raman spectroscopy.
    Liu Y; Sun B; Tajcmanova L; Liu C; Wu J
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 May; 272():120947. PubMed ID: 35144080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distribution Characteristics of Valuable Elements, Al, Li, and Ga, and Rare Earth Elements in Feed Coal, Fly Ash, and Bottom Ash from a 300 MW Circulating Fluidized Bed Boiler.
    Ma Z; Shan X; Cheng F
    ACS Omega; 2019 Apr; 4(4):6854-6863. PubMed ID: 31459803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Emission Characteristics and Toxicity Effects of Halogenated Polycyclic Aromatic Hydrocarbons from Coal-Fired and Waste Incineration Power Plants].
    Ni XF; Wang RW; Cai FX; Cai JW
    Huan Jing Ke Xue; 2021 Apr; 42(4):1660-1667. PubMed ID: 33742801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emission and transformation behavior of minerals and hazardous trace elements (HTEs) during coal combustion in a circulating fluidized bed boiler.
    Fu B; Liu G; Sun M; Hower JC; Mian MM; Wu D; Wang R; Hu G
    Environ Pollut; 2018 Nov; 242(Pt B):1950-1960. PubMed ID: 30072220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluidized bed combustion bottom ash: A better and alternative geo-material resource for construction.
    Mandal AK; Paramkusam BR; Sinha OP
    Waste Manag Res; 2018 Apr; 36(4):351-360. PubMed ID: 29595099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Desulfurization Characteristics of Fuel-Born Alkali and Alkali Earth Metal Compounds in Coal Ashes from Lab-Scale Experiment to Real-Scale Monitoring of CFBC and PC Boiler.
    Kim DY; Cheong ID; Kim J; Lee D
    ACS Omega; 2021 Mar; 6(8):5962-5971. PubMed ID: 33681634
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Walencik-Łata A; Smołka-Danielowska D
    Environ Pollut; 2020 Dec; 267():115462. PubMed ID: 32891046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fly Ash, from Recycling to Potential Raw Material for Mesoporous Silica Synthesis.
    Miricioiu MG; Niculescu VC
    Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32151006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feasibility Study of Grinding Circulating Fluidized Bed Ash as Cement Admixture.
    Du X; Huang Z; Ding Y; Xu W; Zhang M; Wei L; Yang H
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Migration and emission behavior of arsenic and selenium in a circulating fluidized bed power plant burning arsenic/selenium-enriched coal.
    Huang Y; Gong H; Hu H; Fu B; Yuan B; Li S; Luo G; Yao H
    Chemosphere; 2021 Jan; 263():127920. PubMed ID: 32822936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of Iron Removal in the Recovery of Rare-Earth Elements from Coal Fly Ash Using a Recyclable Ionic Liquid.
    Stoy L; Kulkarni Y; Huang CH
    Environ Sci Technol; 2022 Apr; 56(8):5150-5160. PubMed ID: 35380811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The enrichment of natural radionuclides in oil shale-fired power plants in Estonia--the impact of new circulating fluidized bed technology.
    Vaasma T; Kiisk M; Meriste T; Tkaczyk AH
    J Environ Radioact; 2014 Mar; 129():133-9. PubMed ID: 24462922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Retention of selenium volatility using lime in coal combustion].
    Zhang J; Ren D; Zhong Q; Xu F; Zhang Y; Yin J
    Huan Jing Ke Xue; 2001 May; 22(3):100-3. PubMed ID: 11507891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co-combustion of tannery sludge in a commercial circulating fluidized bed boiler.
    Dong H; Jiang X; Lv G; Chi Y; Yan J
    Waste Manag; 2015 Dec; 46():227-33. PubMed ID: 26278370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental study and theoretical analysis on fluidized activation of coal gasification fly ash from an industrial CFB gasifier.
    Qi X; Yang Q; Song W; Zhu Z; Lyu Q
    Waste Manag; 2023 Feb; 157():82-90. PubMed ID: 36527778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.