These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 36500023)
21. Recycling of cathode material from spent lithium-ion batteries: Challenges and future perspectives. Raj T; Chandrasekhar K; Kumar AN; Sharma P; Pandey A; Jang M; Jeon BH; Varjani S; Kim SH J Hazard Mater; 2022 May; 429():128312. PubMed ID: 35086036 [TBL] [Abstract][Full Text] [Related]
22. Second life and recycling: Energy and environmental sustainability perspectives for high-performance lithium-ion batteries. Tao Y; Rahn CD; Archer LA; You F Sci Adv; 2021 Nov; 7(45):eabi7633. PubMed ID: 34739316 [TBL] [Abstract][Full Text] [Related]
23. A sustainable process for the recovery of valuable metals from spent lithium-ion batteries. Fan B; Chen X; Zhou T; Zhang J; Xu B Waste Manag Res; 2016 May; 34(5):474-81. PubMed ID: 26951340 [TBL] [Abstract][Full Text] [Related]
24. Organic reductants based leaching: A sustainable process for the recovery of valuable metals from spent lithium ion batteries. Chen X; Guo C; Ma H; Li J; Zhou T; Cao L; Kang D Waste Manag; 2018 May; 75():459-468. PubMed ID: 29366798 [TBL] [Abstract][Full Text] [Related]
25. Economic and environmental characterization of an evolving Li-ion battery waste stream. Wang X; Gaustad G; Babbitt CW; Bailey C; Ganter MJ; Landi BJ J Environ Manage; 2014 Mar; 135():126-34. PubMed ID: 24531384 [TBL] [Abstract][Full Text] [Related]
26. Aspects of Nickel, Cobalt and Lithium, the Three Key Elements for Li-Ion Batteries: An Overview on Resources, Demands, and Production. Kalungi P; Yao Z; Huang H Materials (Basel); 2024 Sep; 17(17):. PubMed ID: 39274778 [TBL] [Abstract][Full Text] [Related]
27. Countercurrent leaching of Ni, Co, Mn, and Li from spent lithium-ion batteries. Jian Y; Yanqing L; Fangyang L; Ming J; Liangxing J Waste Manag Res; 2020 Dec; 38(12):1358-1366. PubMed ID: 32720588 [TBL] [Abstract][Full Text] [Related]
28. Hydrometallurgical enhanced liberation and recovery of anode material from spent lithium-ion batteries. Li J; He Y; Fu Y; Xie W; Feng Y; Alejandro K Waste Manag; 2021 May; 126():517-526. PubMed ID: 33839403 [TBL] [Abstract][Full Text] [Related]
29. Energy and environmental assessment of a traction lithium-ion battery pack for plug-in hybrid electric vehicles. Cusenza MA; Bobba S; Ardente F; Cellura M; Di Persio F J Clean Prod; 2019 Apr; 215():634-649. PubMed ID: 31007414 [TBL] [Abstract][Full Text] [Related]
30. Enhancement in leaching process of lithium and cobalt from spent lithium-ion batteries using benzenesulfonic acid system. Fu Y; He Y; Qu L; Feng Y; Li J; Liu J; Zhang G; Xie W Waste Manag; 2019 Apr; 88():191-199. PubMed ID: 31079631 [TBL] [Abstract][Full Text] [Related]
31. [Carbon Footprint of Spent Ternary Lithium-Ion Battery Waste Recycling]. Song XC; Du S; Xie MH; Deng CN; Guo J; Shen P; Zhao C; Chen C Huan Jing Ke Xue; 2024 Jun; 45(6):3459-3467. PubMed ID: 38897766 [TBL] [Abstract][Full Text] [Related]
32. Pathway decisions for reuse and recycling of retired lithium-ion batteries considering economic and environmental functions. Ma R; Tao S; Sun X; Ren Y; Sun C; Ji G; Xu J; Wang X; Zhang X; Wu Q; Zhou G Nat Commun; 2024 Sep; 15(1):7641. PubMed ID: 39223130 [TBL] [Abstract][Full Text] [Related]
33. Coupling regeneration strategy of lithium-ion electrode materials turned with naphthalenedisulfonic acid. Qiu X; Tian Y; Deng W; Li F; Hu J; Deng W; Chen J; Zou G; Hou H; Yang Y; Sun W; Hu Y; Ji X Waste Manag; 2021 Dec; 136():1-10. PubMed ID: 34627101 [TBL] [Abstract][Full Text] [Related]
34. Recycling of LiNi Meng X; Hao J; Cao H; Lin X; Ning P; Zheng X; Chang J; Zhang X; Wang B; Sun Z Waste Manag; 2019 Feb; 84():54-63. PubMed ID: 30691913 [TBL] [Abstract][Full Text] [Related]
35. Organics removal combined with in situ thermal-reduction for enhancing the liberation and metallurgy efficiency of LiCoO Zhang G; Yuan X; He Y; Wang H; Xie W; Zhang T Waste Manag; 2020 Sep; 115():113-120. PubMed ID: 32736031 [TBL] [Abstract][Full Text] [Related]
36. Estimating the environmental impacts of global lithium-ion battery supply chain: A temporal, geographical, and technological perspective. Llamas-Orozco JA; Meng F; Walker GS; Abdul-Manan AFN; MacLean HL; Posen ID; McKechnie J PNAS Nexus; 2023 Nov; 2(11):pgad361. PubMed ID: 38034093 [TBL] [Abstract][Full Text] [Related]
37. Recovery of cobalt from spent lithium-ion batteries using supercritical carbon dioxide extraction. Bertuol DA; Machado CM; Silva ML; Calgaro CO; Dotto GL; Tanabe EH Waste Manag; 2016 May; 51():245-251. PubMed ID: 26970842 [TBL] [Abstract][Full Text] [Related]
38. Hydrometallurgical process for the recovery of metal values from spent lithium-ion batteries in citric acid media. Chen X; Zhou T Waste Manag Res; 2014 Nov; 32(11):1083-93. PubMed ID: 25378255 [TBL] [Abstract][Full Text] [Related]
39. Recycling chains for lithium-ion batteries: A critical examination of current challenges, opportunities and process dependencies. Windisch-Kern S; Gerold E; Nigl T; Jandric A; Altendorfer M; Rutrecht B; Scherhaufer S; Raupenstrauch H; Pomberger R; Antrekowitsch H; Part F Waste Manag; 2022 Feb; 138():125-139. PubMed ID: 34875455 [TBL] [Abstract][Full Text] [Related]
40. Hydrometallurgical recycling of lithium-ion batteries by reductive leaching with sodium metabisulphite. Vieceli N; Nogueira CA; Guimarães C; Pereira MFC; Durão FO; Margarido F Waste Manag; 2018 Jan; 71():350-361. PubMed ID: 29030120 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]