These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 36500054)

  • 1. Minor Actinides Transmutation Performance in a Closed Th-U Cycle Based on Molten Chloride Salt Fast Reactor.
    He L; Chen L; Cui Y; Xia S; Zou Y
    Materials (Basel); 2022 Dec; 15(23):. PubMed ID: 36500054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the use of a molten salt fast reactor to apply an idealized transmutation scenario for the nuclear phase out.
    Merk B; Rohde U; Glivici-Cotruţă V; Litskevich D; Scholl S
    PLoS One; 2014; 9(4):e92776. PubMed ID: 24690768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transmutation of MAs and LLFPs with a lead-cooled fast reactor.
    Sun XY; Han LH; Li XX; Hu BL; Luo W; Liu L
    Sci Rep; 2023 Jan; 13(1):1693. PubMed ID: 36717698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Concept of a fast breeder reactor to transmute MAs and LLFPs.
    Wakabayashi T
    Sci Rep; 2021 Nov; 11(1):22443. PubMed ID: 34789833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transmutation of All German Transuranium under Nuclear Phase Out Conditions - Is This Feasible from Neutronic Point of View?
    Merk B; Litskevich D
    PLoS One; 2015; 10(12):e0145652. PubMed ID: 26717509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of the Quasi-Binary Phase Diagram FLiNaK-NdF
    Mushnikov P; Tkacheva O; Voronin V; Shishkin V; Zaikov Y
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34771952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel approach on designing ultrahigh burnup metallic TWR fuels: Upsetting the current technological limits.
    Feng L; Xu Y; Qiu J; Liu X; Wen C; Qian Z; Liu W; Yan W; Li Y; Wang Z; Zheng S; Guo S; Shi T; Lu C; Gou J; Li L; Shan J; Stubbins JF; Gu L; Yun D
    MRS Bull; 2022; 47(11):1092-1102. PubMed ID: 36349118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transmutation of actinides in power reactors.
    Bergelson BR; Gerasimov AS; Tikhomirov GV
    Radiat Prot Dosimetry; 2005; 116(1-4 Pt 2):675-8. PubMed ID: 16604724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaporation behavior of
    Huo Y; Luo Y; Zhao Z; Geng J; Dou Q; Ma J
    RSC Adv; 2022 Mar; 12(12):7085-7091. PubMed ID: 35424680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SUPERFACT: A Model Fuel for Studying the Evolution of the Microstructure of Spent Nuclear Fuel during Storage/Disposal.
    Wiss T; Dieste O; De Bona E; Benedetti A; Rondinella V; Konings R
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34772065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study on method to achieve high transmutation of LLFP using fast reactor.
    Wakabayashi T; Tachi Y; Takahashi M; Chiba S; Takaki N
    Sci Rep; 2019 Dec; 9(1):19156. PubMed ID: 31844077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactor-based management of used nuclear fuel: assessment of major options.
    Finck PJ; Wigeland RA; Hill RN
    Health Phys; 2011 Jan; 100(1):46-53. PubMed ID: 21399411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling of fission and activation products in molten salt reactors and their potential impact on the radionuclide monitoring stations of the International Monitoring System.
    Johnson C; Slack JL; Sharma MK; Simpson CK; Burnett JL
    J Environ Radioact; 2021 Aug; 234():106625. PubMed ID: 33957486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Burnup computations of online-refueling process for pebble-bed reactors using layer-mixed-shell fuel movement model.
    Wu SR; Wu SC; Chao DS; Liang JH
    Appl Radiat Isot; 2019 May; 147():1-6. PubMed ID: 30772630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigative study of radiotoxicity of spent nuclear fuel assembly of some commercial nuclear power plants.
    Ojo OP; Sogbadji R; Gyeabour Abrefah R
    Appl Radiat Isot; 2022 Dec; 190():110503. PubMed ID: 36252386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Demand driven salt clean-up in a molten salt fast reactor - Defining a priority list.
    Merk B; Litskevich D; Gregg R; Mount AR
    PLoS One; 2018; 13(3):e0192020. PubMed ID: 29494604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Behavior of toxic metals and radionuclides during molten salt oxidation of chlorinated plastics.
    Yang HC; Cho YJ; Eun HC; Yoo JH; Kim JH
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2004; 39(6):1601-16. PubMed ID: 15244340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of soft heterocyclic N-donor ligands to separate actinides and lanthanides.
    Hudson MJ; Harwood LM; Laventine DM; Lewis FW
    Inorg Chem; 2013 Apr; 52(7):3414-28. PubMed ID: 22867058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel waste printed circuit board recycling process with molten salt.
    Riedewald F; Sousa-Gallagher M
    MethodsX; 2015; 2():100-6. PubMed ID: 26150977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polarizable force field parameterization and theoretical simulations of ThCl
    Liu JB; Chen X; Lu JB; Cui HQ; Li J
    J Comput Chem; 2018 Nov; 39(29):2432-2438. PubMed ID: 30351490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.