These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 36500099)
21. Thermo-Electro-Mechanical Vibrations of Porous Functionally Graded Piezoelectric Nanoshells. Liu YF; Wang YQ Nanomaterials (Basel); 2019 Feb; 9(2):. PubMed ID: 30791652 [TBL] [Abstract][Full Text] [Related]
22. Vibration and Buckling of Shear Deformable Functionally Graded Nanoporous Metal Foam Nanoshells. Zhang Y; Zhang F Nanomaterials (Basel); 2019 Feb; 9(2):. PubMed ID: 30781404 [No Abstract] [Full Text] [Related]
23. Wave Propagation in Rotating Functionally Graded Microbeams Reinforced by Graphene Nanoplatelets. Zhao T; Ma Y; Zhou J; Fu Y Molecules; 2021 Aug; 26(17):. PubMed ID: 34500585 [TBL] [Abstract][Full Text] [Related]
24. Small-scale effects on the radial vibration of an elastic nanosphere based on nonlocal strain gradient theory. Ducottet S; El Baroudi A Nanotechnology; 2023 Jan; 34(11):. PubMed ID: 36595326 [TBL] [Abstract][Full Text] [Related]
26. Dynamic response of the nonlocal strain-stress gradient in laminated polymer composites microtubes. Oyarhossein MA; Alizadeh A; Habibi M; Makkiabadi M; Daman M; Safarpour H; Jung DW Sci Rep; 2020 Mar; 10(1):5616. PubMed ID: 32221331 [TBL] [Abstract][Full Text] [Related]
27. An analytical study of sound transmission loss of functionally graded sandwich cylindrical nanoshell integrated with piezoelectric layers. Thongchom C; Saffari PR; Refahati N; Saffari PR; Pourbashash H; Sirimontree S; Keawsawasvong S Sci Rep; 2022 Feb; 12(1):3048. PubMed ID: 35197511 [TBL] [Abstract][Full Text] [Related]
28. A Refined Simple First-Order Shear Deformation Theory for Static Bending and Free Vibration Analysis of Advanced Composite Plates. Nguyen HN; Hong TT; Vinh PV; Quang ND; Thom DV Materials (Basel); 2019 Jul; 12(15):. PubMed ID: 31357460 [TBL] [Abstract][Full Text] [Related]
29. An Efficient Beam Element Based on Quasi-3D Theory for Static Bending Analysis of Functionally Graded Beams. Nguyen HN; Hong TT; Vinh PV; Thom DV Materials (Basel); 2019 Jul; 12(13):. PubMed ID: 31288438 [TBL] [Abstract][Full Text] [Related]
30. Optimal Tailoring of CNT Distribution in Functionally Graded Porous CNTRC Beams. Cho JR; Kim HJ Polymers (Basel); 2023 Jan; 15(2):. PubMed ID: 36679231 [TBL] [Abstract][Full Text] [Related]
31. Application of Surface Stress-Driven Model for Higher Vibration Modes of Functionally Graded Nanobeams. Lovisi G; Feo L; Lambiase A; Penna R Nanomaterials (Basel); 2024 Feb; 14(4):. PubMed ID: 38392723 [TBL] [Abstract][Full Text] [Related]
32. A 3D nano scale IGA for free vibration and buckling analyses of multi-directional FGM nanoshells. Cuong-Le T; Nguyen KD; Lee J; Rabczuk T; Nguyen-Xuan H Nanotechnology; 2021 Nov; 33(6):. PubMed ID: 34695808 [TBL] [Abstract][Full Text] [Related]
33. The Effect of Porosity on Elastic Stability of Toroidal Shell Segments Made of Saturated Porous Functionally Graded Materials. Babaei H; Jabbari M; Eslami MR J Press Vessel Technol; 2021 Jun; 143(3):031501. PubMed ID: 33442072 [TBL] [Abstract][Full Text] [Related]
34. An exact solution for the free-vibration analysis of functionally graded carbon-nanotube-reinforced composite beams with arbitrary boundary conditions. Shi Z; Yao X; Pang F; Wang Q Sci Rep; 2017 Oct; 7(1):12909. PubMed ID: 29018211 [TBL] [Abstract][Full Text] [Related]
35. Homoclinic behaviors and chaotic motions of double layered viscoelastic nanoplates based on nonlocal theory and extended Melnikov method. Wang Y; Li FM; Wang YZ Chaos; 2015 Jun; 25(6):063108. PubMed ID: 26117102 [TBL] [Abstract][Full Text] [Related]
36. Low-Velocity Impact Behavior of Sandwich Plates with FG-CNTRC Face Sheets and Negative Poisson's Ratio Auxetic Honeycombs Core. Yang C; Ma W; Zhang Z; Zhong J Polymers (Basel); 2022 Jul; 14(14):. PubMed ID: 35890713 [TBL] [Abstract][Full Text] [Related]
37. Thermal Mechanical Bending Response of Symmetrical Functionally Graded Material Plates. Han M; Li Z; Huang Z; Wang X; Gao W Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37444996 [TBL] [Abstract][Full Text] [Related]
38. Wave Propagation of Porous Nanoshells. Karami B; Shahsavari D; Janghorban M; Dimitri R; Tornabene F Nanomaterials (Basel); 2018 Dec; 9(1):. PubMed ID: 30586942 [TBL] [Abstract][Full Text] [Related]
39. Fluttering and divergence instability of functionally graded viscoelastic nanotubes conveying fluid based on nonlocal strain gradient theory. Nematollahi MS; Mohammadi H; Taghvaei S Chaos; 2019 Mar; 29(3):033108. PubMed ID: 30927831 [TBL] [Abstract][Full Text] [Related]