BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 36500209)

  • 1. Cyclo- and Polyphosphazenes for Biomedical Applications.
    Casella G; Carlotto S; Lanero F; Mozzon M; Sgarbossa P; Bertani R
    Molecules; 2022 Nov; 27(23):. PubMed ID: 36500209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradable polyphosphazene biomaterials for tissue engineering and delivery of therapeutics.
    Baillargeon AL; Mequanint K
    Biomed Res Int; 2014; 2014():761373. PubMed ID: 24883323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of side group chemistry on the properties of biodegradable L-alanine cosubstituted polyphosphazenes.
    Singh A; Krogman NR; Sethuraman S; Nair LS; Sturgeon JL; Brown PW; Laurencin CT; Allcock HR
    Biomacromolecules; 2006 Mar; 7(3):914-8. PubMed ID: 16529431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyphosphazene-Based Biomaterials for Biomedical Applications.
    Jin GW; Rejinold NS; Choy JH
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical properties and osteocompatibility of novel biodegradable alanine based polyphosphazenes: Side group effects.
    Sethuraman S; Nair LS; El-Amin S; Nguyen MT; Singh A; Krogman N; Greish YE; Allcock HR; Brown PW; Laurencin CT
    Acta Biomater; 2010 Jun; 6(6):1931-7. PubMed ID: 20004751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodegradable polyphosphazenes for drug delivery applications.
    Lakshmi S; Katti DS; Laurencin CT
    Adv Drug Deliv Rev; 2003 Apr; 55(4):467-82. PubMed ID: 12706046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication and optimization of methylphenoxy substituted polyphosphazene nanofibers for biomedical applications.
    Nair LS; Bhattacharyya S; Bender JD; Greish YE; Brown PW; Allcock HR; Laurencin CT
    Biomacromolecules; 2004; 5(6):2212-20. PubMed ID: 15530035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro evaluation of poly[bis(ethyl alanato)phosphazene] as a scaffold for bone tissue engineering.
    Conconi MT; Lora S; Menti AM; Carampin P; Parnigotto PP
    Tissue Eng; 2006 Apr; 12(4):811-9. PubMed ID: 16674294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in polymer drug conjugates.
    Sharma R; Singla N; Mehta S; Gaba T; Rawal RK; Rao HS; Bhardwaj TR
    Mini Rev Med Chem; 2015; 15(9):751-61. PubMed ID: 25985952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis, characterization, and osteocompatibility evaluation of novel alanine-based polyphosphazenes.
    Nair LS; Lee DA; Bender JD; Barrett EW; Greish YE; Brown PW; Allcock HR; Laurencin CT
    J Biomed Mater Res A; 2006 Jan; 76(1):206-13. PubMed ID: 16265637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generational Biodegradable and Regenerative Polyphosphazene Polymers and their Blends with Poly (lactic-co-glycolic acid).
    Ogueri KS; Allcock HR; Laurencin CT
    Prog Polym Sci; 2019 Nov; 98():. PubMed ID: 31551636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and optical properties of sulfur-containing monomers and cyclomatrix polyphosphazenes.
    Fushimi T; Allcock HR
    Dalton Trans; 2010 Jun; 39(22):5349-55. PubMed ID: 20442910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent research progress on polyphosphazene-based drug delivery systems.
    Ni Z; Yu H; Wang L; Shen D; Elshaarani T; Fahad S; Khan A; Haq F; Teng L
    J Mater Chem B; 2020 Feb; 8(8):1555-1575. PubMed ID: 32025683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of side group modification in polyphosphazenes on hydrolysis and cell adhesion of blends with PLGA.
    Krogman NR; Weikel AL; Kristhart KA; Nukavarapu SP; Deng M; Nair LS; Laurencin CT; Allcock HR
    Biomaterials; 2009 Jun; 30(17):3035-41. PubMed ID: 19345410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tyrosine-bearing polyphosphazenes.
    Allcock HR; Singh A; Ambrosio AM; Laredo WR
    Biomacromolecules; 2003; 4(6):1646-53. PubMed ID: 14606891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodegradable polymers. II. Degradation characteristics of hydrolysis-sensitive poly[(organo)phosphazenes].
    Crommen JH; Schacht EH; Mense EH
    Biomaterials; 1992; 13(9):601-11. PubMed ID: 1391407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biological evaluation of preceramic organosilicon polymers for various healthcare and biomedical engineering applications: A review.
    Francis A
    J Biomed Mater Res B Appl Biomater; 2021 May; 109(5):744-764. PubMed ID: 33075186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Miscibility of choline-substituted polyphosphazenes with PLGA and osteoblast activity on resulting blends.
    Weikel AL; Owens SG; Morozowich NL; Deng M; Nair LS; Laurencin CT; Allcock HR
    Biomaterials; 2010 Nov; 31(33):8507-15. PubMed ID: 20800277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carrageenans for tissue engineering and regenerative medicine applications: A review.
    Jafari A; Farahani M; Sedighi M; Rabiee N; Savoji H
    Carbohydr Polym; 2022 Apr; 281():119045. PubMed ID: 35074118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oligoaniline-based conductive biomaterials for tissue engineering.
    Zarrintaj P; Bakhshandeh B; Saeb MR; Sefat F; Rezaeian I; Ganjali MR; Ramakrishna S; Mozafari M
    Acta Biomater; 2018 May; 72():16-34. PubMed ID: 29625254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.