These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 36500209)

  • 21. Synthesis of a novel biodegradable and electroactive polyphosphazene for biomedical application.
    Zhang QS; Yan YH; Li SP; Feng T
    Biomed Mater; 2009 Jun; 4(3):035008. PubMed ID: 19468157
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Polyphosphazenes as biomaterials: surface modification of poly(bis(trifluoroethoxy)phosphazene) with polyethylene glycols.
    Lora S; Palma G; Bozio R; Caliceti P; Pezzin G
    Biomaterials; 1993 May; 14(6):430-6. PubMed ID: 8507789
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Degradable glycine-based photo-polymerizable polyphosphazenes for use as scaffolds for tissue regeneration.
    Rothemund S; Aigner TB; Iturmendi A; Rigau M; Husár B; Hildner F; Oberbauer E; Prambauer M; Olawale G; Forstner R; Liska R; Schröder KR; Brüggemann O; Teasdale I
    Macromol Biosci; 2015 Mar; 15(3):351-63. PubMed ID: 25355036
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vivo biodegradability and biocompatibility evaluation of novel alanine ester based polyphosphazenes in a rat model.
    Sethuraman S; Nair LS; El-Amin S; Farrar R; Nguyen MT; Singh A; Allcock HR; Greish YE; Brown PW; Laurencin CT
    J Biomed Mater Res A; 2006 Jun; 77(4):679-87. PubMed ID: 16514601
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Low temperature formation of hydroxyapatite-poly(alkyl oxybenzoate)phosphazene composites for biomedical applications.
    Greish YE; Bender JD; Lakshmi S; Brown PW; Allcock HR; Laurencin CT
    Biomaterials; 2005 Jan; 26(1):1-9. PubMed ID: 15193876
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Degradable phosphazene polymers and blends for biomedical applications.
    Carenza M; Lora S; Fambri L
    Adv Exp Med Biol; 2004; 553():113-22. PubMed ID: 15503451
    [No Abstract]   [Full Text] [Related]  

  • 27. Amphiphilic polyphosphazenes as membrane materials: influence of side group on radiation cross-linking.
    Allcock HR; Gebura M; Kwon S; Neenan TX
    Biomaterials; 1988 Nov; 9(6):500-8. PubMed ID: 3224137
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Composite polymer-bioceramic scaffolds with drug delivery capability for bone tissue engineering.
    Mouriño V; Cattalini JP; Roether JA; Dubey P; Roy I; Boccaccini AR
    Expert Opin Drug Deliv; 2013 Oct; 10(10):1353-65. PubMed ID: 23777443
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Silk protein-based hydrogels: Promising advanced materials for biomedical applications.
    Kapoor S; Kundu SC
    Acta Biomater; 2016 Feb; 31():17-32. PubMed ID: 26602821
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Glycoproteins functionalized natural and synthetic polymers for prospective biomedical applications: A review.
    Tabasum S; Noreen A; Kanwal A; Zuber M; Anjum MN; Zia KM
    Int J Biol Macromol; 2017 May; 98():748-776. PubMed ID: 28111295
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Properties and clinical development of a novel coating technology: the poly[bis(trifluoroethoxy)phosphazene].
    Capodanno D; Tamburino C
    Recent Pat Drug Deliv Formul; 2010 Jan; 4(1):18-22. PubMed ID: 19939221
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Polyphosphates and other phosphorus-containing polymers for drug delivery applications.
    Chaubal MV; Gupta AS; Lopina ST; Bruley DF
    Crit Rev Ther Drug Carrier Syst; 2003; 20(4):295-315. PubMed ID: 14635982
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design, synthesis and evaluation of antimalarial potential of polyphosphazene linked combination therapy of primaquine and dihydroartemisinin.
    Kumar S; Singh RK; Sharma R; Murthy RS; Bhardwaj TR
    Eur J Pharm Sci; 2015 Jan; 66():123-37. PubMed ID: 25312346
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Miscibility and in vitro osteocompatibility of biodegradable blends of poly[(ethyl alanato) (p-phenyl phenoxy) phosphazene] and poly(lactic acid-glycolic acid).
    Deng M; Nair LS; Nukavarapu SP; Kumbar SG; Jiang T; Krogman NR; Singh A; Allcock HR; Laurencin CT
    Biomaterials; 2008 Jan; 29(3):337-49. PubMed ID: 17942150
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrospinning as a powerful technique for biomedical applications: a critically selected survey.
    Villarreal-Gómez LJ; Cornejo-Bravo JM; Vera-Graziano R; Grande D
    J Biomater Sci Polym Ed; 2016; 27(2):157-76. PubMed ID: 26540235
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Silk fibroin as a natural polymeric based bio-material for tissue engineering and drug delivery systems-A review.
    Wani SUD; Gautam SP; Qadrie ZL; Gangadharappa HV
    Int J Biol Macromol; 2020 Nov; 163():2145-2161. PubMed ID: 32950527
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biodegradable synthetic polymers for tissue engineering.
    Gunatillake PA; Adhikari R
    Eur Cell Mater; 2003 May; 5():1-16; discussion 16. PubMed ID: 14562275
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Polyphosphazenes: Phosphorus in Inorganic-Organic Polymers.
    Allcock HR; Chen C
    J Org Chem; 2020 Nov; 85(22):14286-14297. PubMed ID: 33085889
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Branched Macromolecular Architectures for Degradable, Multifunctional Phosphorus-Based Polymers.
    Henke H; Brüggemann O; Teasdale I
    Macromol Rapid Commun; 2017 Feb; 38(4):. PubMed ID: 28044384
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recent advances of polymer-based piezoelectric composites for biomedical applications.
    Mokhtari F; Azimi B; Salehi M; Hashemikia S; Danti S
    J Mech Behav Biomed Mater; 2021 Oct; 122():104669. PubMed ID: 34280866
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.