These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 36500509)

  • 1. Structural Investigation of DHICA Eumelanin Using Density Functional Theory and Classical Molecular Dynamics Simulations.
    Soltani S; Sowlati-Hashjin S; Tetsassi Feugmo CG; Karttunen M
    Molecules; 2022 Dec; 27(23):. PubMed ID: 36500509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Composition of mammalian eumelanins: analyses of DHICA-derived units in pigments from hair and melanoma cells.
    Wilczek A; Kondoh H; Mishima Y
    Pigment Cell Res; 1996 Apr; 9(2):63-7. PubMed ID: 8857667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Free Energy and Stacking of Eumelanin Nanoaggregates.
    Soltani S; Sowlati-Hashjin S; Tetsassi Feugmo CG; Karttunen M
    J Phys Chem B; 2022 Mar; 126(8):1805-1818. PubMed ID: 35175060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 5,6-Dihydroxyindole eumelanin content in human skin with varying degrees of constitutive pigmentation.
    Del Bino S; Ito S; Sok J; Wakamatsu K
    Pigment Cell Melanoma Res; 2022 Nov; 35(6):622-626. PubMed ID: 35933709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical characterization of eumelanins with special emphasis on 5,6-dihydroxyindole-2-carboxylic acid content and molecular size.
    Ozeki H; Wakamatsu K; Ito S; Ishiguro I
    Anal Biochem; 1997 May; 248(1):149-57. PubMed ID: 9177734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Raman spectroscopy quantification of eumelanin subunits in natural unaltered pigments.
    Galván I; Araujo-Andrade C; Marro M; Loza-Alvarez P; Wakamatsu K
    Pigment Cell Melanoma Res; 2018 Nov; 31(6):673-682. PubMed ID: 29738111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and characterization of melanins from dihydroxyindole-2-carboxylic acid and dihydroxyindole.
    Orlow SJ; Osber MP; Pawelek JM
    Pigment Cell Res; 1992 Sep; 5(3):113-21. PubMed ID: 1409448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship of melanin degradation products to actual melanin content: application to human hair.
    Borges CR; Roberts JC; Wilkins DG; Rollins DE
    Anal Biochem; 2001 Mar; 290(1):116-25. PubMed ID: 11180945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and characterization of mammalian eumelanins from hair and irides.
    Novellino L; Napolitano A; Prota G
    Biochim Biophys Acta; 2000 Jul; 1475(3):295-306. PubMed ID: 10913829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-performance liquid chromatography estimation of cross-linking of dihydroxyindole moiety in eumelanin.
    Ito S; Wakamatsu K; Glass K; Simon JD
    Anal Biochem; 2013 Mar; 434(2):221-5. PubMed ID: 23256922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degree of polymerization of 5,6-dihydroxyindole-derived eumelanin from chemical degradation study.
    Okuda H; Yoshino K; Wakamatsu K; Ito S; Sota T
    Pigment Cell Melanoma Res; 2014 Jul; 27(4):664-7. PubMed ID: 24750564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydration effects on the electronic properties of eumelanin building blocks.
    Assis Oliveira LB; L Fonseca T; Costa Cabral BJ; Coutinho K; Canuto S
    J Chem Phys; 2016 Aug; 145(8):084501. PubMed ID: 27586929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insect melanogenesis. II. Inability of Manduca phenoloxidase to act on 5,6-dihydroxyindole-2-carboxylic acid.
    Sugumaran M; Duggaraju R; Generozova F; Ito S
    Pigment Cell Res; 1999 Apr; 12(2):118-25. PubMed ID: 10231199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Charge transfer in DHICA eumelanin-like oligomers: role of hydrogen bonds.
    Choudhury A; Ghosh D
    Chem Commun (Camb); 2020 Sep; 56(72):10481-10484. PubMed ID: 32766667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of dopachrome tautomerization into 5,6-dihydroxyindole-2-carboxylic acid catalyzed by Cu(II) based on quantum chemical calculations.
    Kishida R; Saputro AG; Kasai H
    Biochim Biophys Acta; 2015 Feb; 1850(2):281-6. PubMed ID: 25450182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. "Fifty Shades" of Black and Red or How Carboxyl Groups Fine Tune Eumelanin and Pheomelanin Properties.
    Micillo R; Panzella L; Koike K; Monfrecola G; Napolitano A; d'Ischia M
    Int J Mol Sci; 2016 May; 17(5):. PubMed ID: 27196900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intermolecular π-electron perturbations generate extrinsic visible contributions to eumelanin black chromophore in model polymers with interrupted interring conjugation.
    Ascione L; Pezzella A; Ambrogi V; Carfagna C; d'Ischia M
    Photochem Photobiol; 2013; 89(2):314-8. PubMed ID: 23002723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unexpected impact of esterification on the antioxidant activity and (photo)stability of a eumelanin from 5,6-dihydroxyindole-2-carboxylic acid.
    Micillo R; Iacomino M; Perfetti M; Panzella L; Koike K; D'Errico G; d'Ischia M; Napolitano A
    Pigment Cell Melanoma Res; 2018 Jul; 31(4):475-483. PubMed ID: 29350885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the antioxidant activity of eumelanin biopigments: a quantitative comparison between free radical scavenging and redox properties.
    Cecchi T; Pezzella A; Di Mauro E; Cestola S; Ginsburg D; Luzi M; Rigucci A; Santato C
    Nat Prod Res; 2020 Sep; 34(17):2465-2473. PubMed ID: 30600712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembly of 5,6-dihydroxyindole-2-carboxylic acid: polymorphism of a eumelanin building block on Au(111).
    De Marchi F; Galeotti G; Simenas M; Ji P; Chi L; Tornau EE; Pezzella A; MacLeod J; Ebrahimi M; Rosei F
    Nanoscale; 2019 Mar; 11(12):5422-5428. PubMed ID: 30855042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.