These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 36500520)

  • 1. Formation of miRNA Nanoprobes-Conjugation Approaches Leading to the Functionalization.
    Vilímová I; Hervé-Aubert K; Chourpa I
    Molecules; 2022 Dec; 27(23):. PubMed ID: 36500520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA Nanomaterial-Based Optical Probes for Exosomal miRNA Detection.
    Tang J; Li Q; Yao C; Yang D
    Chempluschem; 2023 Jan; 88(1):e202200345. PubMed ID: 36650721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent advances in nanomaterial-based electrochemical and optical sensing platforms for microRNA assays.
    Wang YH; He LL; Huang KJ; Chen YX; Wang SY; Liu ZH; Li D
    Analyst; 2019 May; 144(9):2849-2866. PubMed ID: 30916675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface Engineering of Nanomaterials with Polymers, Biomolecules, and Small Ligands for Nanomedicine.
    Díez-Pascual AM
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Covalent and Non-covalent Functionalized Nanomaterials for Environmental Restoration.
    Zhang S; Malik S; Ali N; Khan A; Bilal M; Rasool K
    Top Curr Chem (Cham); 2022 Aug; 380(5):44. PubMed ID: 35951126
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Knappe GA; Wamhoff EC; Read BJ; Irvine DJ; Bathe M
    ACS Nano; 2021 Sep; 15(9):14316-14322. PubMed ID: 34490781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanotechnology-based strategies for the detection and quantification of microRNA.
    Degliangeli F; Pompa PP; Fiammengo R
    Chemistry; 2014 Jul; 20(31):9476-92. PubMed ID: 24989446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Progress in Nanomaterials Modified Electrochemical Biosensors for the Detection of MicroRNA.
    Low SS; Ji D; Chai WS; Liu J; Khoo KS; Salmanpour S; Karimi F; Deepanraj B; Show PL
    Micromachines (Basel); 2021 Nov; 12(11):. PubMed ID: 34832823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Review on the Role of Nanosensors in Detecting Cellular miRNA Expression in Colorectal Cancer.
    Girigoswami K; Girigoswami A
    Endocr Metab Immune Disord Drug Targets; 2021; 21(1):12-26. PubMed ID: 32410567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent advances on signal amplification strategies in photoelectrochemical sensing of microRNAs.
    Li F; Zhou Y; Yin H; Ai S
    Biosens Bioelectron; 2020 Oct; 166():112476. PubMed ID: 32745927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent advances in nanomaterials for colorimetric cancer detection.
    Wang H; Wu T; Li M; Tao Y
    J Mater Chem B; 2021 Jan; 9(4):921-938. PubMed ID: 33367450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Review of Off-On Fluorescent Nanoprobes: Mechanisms, Properties, and Applications.
    Wang XL; Han X; Tang XY; Chen XJ; Li HJ
    J Biomed Nanotechnol; 2021 Jul; 17(7):1249-1272. PubMed ID: 34446130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graphene Oxide-Gold Star Construct on Triangular Electrodes for Alzheimer's Disease Identification.
    Chang W; Zhao J; Liu L; Xing X; Zhang C; Meng H; Gopinath SCB; Liu Y
    J Anal Methods Chem; 2021; 2021():6661799. PubMed ID: 33688447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Target-responsive DNA/RNA nanomaterials for microRNA sensing and inhibition: the jack-of-all-trades in cancer nanotheranostics?
    Conde J; Edelman ER; Artzi N
    Adv Drug Deliv Rev; 2015 Jan; 81():169-83. PubMed ID: 25220355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanomaterial-assisted microfluidics for multiplex assays.
    Wang Y; Gao Y; Yin Y; Pan Y; Wang Y; Song Y
    Mikrochim Acta; 2022 Mar; 189(4):139. PubMed ID: 35275267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanotechnology based approaches for detection and delivery of microRNA in healthcare and crop protection.
    Chaudhary V; Jangra S; Yadav NR
    J Nanobiotechnology; 2018 Apr; 16(1):40. PubMed ID: 29653577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multicolor-Encoded Reconfigurable DNA Nanostructures Enable Multiplexed Sensing of Intracellular MicroRNAs in Living Cells.
    Zhou W; Li D; Xiong C; Yuan R; Xiang Y
    ACS Appl Mater Interfaces; 2016 Jun; 8(21):13303-8. PubMed ID: 27195747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent Applications of Carbon Nanomaterials for microRNA Electrochemical Sensing.
    Wang J; Wen J; Yan H
    Chem Asian J; 2021 Jan; 16(2):114-128. PubMed ID: 33289286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Attomolar-Level Ultrasensitive and Multiplex microRNA Detection Enabled by a Nanomaterial Locally Assembled Microfluidic Biochip for Cancer Diagnosis.
    Chu Y; Gao Y; Tang W; Qiang L; Han Y; Gao J; Zhang Y; Liu H; Han L
    Anal Chem; 2021 Mar; 93(12):5129-5136. PubMed ID: 33720706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prospects of nanotechnology in clinical immunodiagnostics.
    Ansari AA; Alhoshan M; Alsalhi MS; Aldwayyan AS
    Sensors (Basel); 2010; 10(7):6535-81. PubMed ID: 22163566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.