BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 36500558)

  • 1. Enantioselective Recognition of Lysine and Phenylalanine Using an Imidazole Salt-Type Fluorescent Probe Based on H
    Wei Z; Tang S; Sun X; Hu Y
    Molecules; 2022 Dec; 27(23):. PubMed ID: 36500558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enantioselective Recognition of L-Lysine by ICT Effect with a Novel Binaphthyl-Based Complex.
    Tang S; Wei Z; Guo J; Sun X; Hu Y
    Micromachines (Basel); 2023 Feb; 14(3):. PubMed ID: 36984907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chiral fluorescent sensor based on H
    Zhang Y; Wang H; Yu H; Sun X
    RSC Adv; 2022 Apr; 12(19):11967-11973. PubMed ID: 35481074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Intramolecular Charge Transfer Mechanism by Which Chiral Self-Assembled H
    Wang R; Song K; Wei Z; Sun Y; Sun X; Hu Y
    Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38891794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enantioselective fluorescent sensors: a tale of BINOL.
    Pu L
    Acc Chem Res; 2012 Feb; 45(2):150-63. PubMed ID: 21834528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of the fluorescent properties of partially hydrogenated 1,1'-bi-2-naphthol-amine molecules and their use for enantioselective fluorescent recognition.
    Yu S; DeBerardinis AM; Turlington M; Pu L
    J Org Chem; 2011 Apr; 76(8):2814-9. PubMed ID: 21405012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hg(2+) -induced in situ generated radical cation of (S)-BINOL-based polymer for highly enantioselective recognition of phenylalaninol.
    Jiao J; Li F; Zhang S; Quan Y; Zheng W; Cheng Y; Zhu C
    Macromol Rapid Commun; 2014 Aug; 35(16):1443-9. PubMed ID: 25048009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enantioselective Fluorescence Recognition of Free α-Amino Acids by Ion-Type Ammonium Salt-Based Sensors.
    Bai L; Li C; Wei D; Xu C
    J Fluoresc; 2023 Dec; ():. PubMed ID: 38157083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micelle-Encapsulated Fluorescent Probe: Chemoselective and Enantioselective Recognition of Lysine in Aqueous Solution.
    Du G; Pu L
    Org Lett; 2019 Jun; 21(12):4777-4781. PubMed ID: 31184163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sulfonation of 3,3'-Diformyl-BINOL for Enantioselective Fluorescent Recognition of Amino Acids in Water.
    Zhao F; Wang Y; Wu X; Yu S; Yu X; Pu L
    Chemistry; 2020 Jun; 26(32):7258-7262. PubMed ID: 32128894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of a "turn-on"-type enantioselective fluorescence sensor via a modified achiral MOF: applications for synchronous detection of phenylalaninol enantiomers.
    Xiao J; Wang X; Xu X; Tian F; Liu Z
    Analyst; 2021 Feb; 146(3):937-942. PubMed ID: 33242037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Furo-fused BINOL based crown as a fluorescent chiral sensor for enantioselective recognition of phenylethylamine and ethyl ester of valine.
    Upadhyay SP; Pissurlenkar RR; Coutinho EC; Karnik AV
    J Org Chem; 2007 Jul; 72(15):5709-14. PubMed ID: 17580908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-Assembled Nanotubes Based on Chiral H
    Tao J; Guo F; Sun Y; Sun X; Hu Y
    Micromachines (Basel); 2024 Jan; 15(1):. PubMed ID: 38276862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly enantioselective fluorescent recognition of serine and other amino acid derivatives.
    Liu HL; Zhu HP; Hou XL; Pu L
    Org Lett; 2010 Sep; 12(18):4172-5. PubMed ID: 20726589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorous Phase-Enhanced Fluorescent Sensitivity for Enantioselective Recognition of Lysine.
    Yang J; Jiang L; Tian J; Yu S; Yu X; Pu L
    Org Lett; 2022 Dec; 24(50):9327-9331. PubMed ID: 36508501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of the Catalytic Activity of Chiral H8 -BINOL Titanium Complexes by Introduction of Sterically Demanding Groups at the 3-Position.
    Hayashi Y; Yamamura N; Kusukawa T; Harada T
    Chemistry; 2016 Aug; 22(34):12095-105. PubMed ID: 27407067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optically active BINOL core-based phenyleneethynylene dendrimers for the enantioselective fluorescent recognition of amino alcohols.
    Pugh VJ; Hu QS; Zuo X; Lewis FD; Pu L
    J Org Chem; 2001 Sep; 66(18):6136-40. PubMed ID: 11529742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemoselective and enantioselective fluorescent identification of specific amino acid enantiomers.
    Pu L
    Chem Commun (Camb); 2022 Jul; 58(58):8038-8048. PubMed ID: 35772182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembled nanovesicles based on chiral bis-H
    Tao J; Wang H; Sun Y; Sun X; Hu Y
    RSC Adv; 2024 Jan; 14(4):2422-2428. PubMed ID: 38223697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From MonoBINOL to BisBINOL: Expanded Enantioselective Fluorescent Recognition of Amino Acids.
    Huo B; Lu K; Tian J; Zhao F; Wang Y; Yu S; Yu X; Pu L
    J Org Chem; 2021 May; 86(9):6780-6786. PubMed ID: 33900764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.