BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 36500571)

  • 1. O
    Tang S; Pan AQ; Wang XJ; Gao SQ; Tan XS; Lin YW
    Molecules; 2022 Dec; 27(23):. PubMed ID: 36500571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulating the Heme Active Site by Covalent Modifications: Two Case Studies of Myoglobin.
    Chen ZY; Yuan H; Wang H; Sun LJ; Yu L; Gao SQ; Tan X; Lin YW
    Chembiochem; 2024 Feb; 25(3):e202300678. PubMed ID: 38015421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An intramolecular disulfide bond designed in myoglobin fine-tunes both protein structure and peroxidase activity.
    Wu LB; Yuan H; Zhou H; Gao SQ; Nie CM; Tan X; Wen GB; Lin YW
    Arch Biochem Biophys; 2016 Jun; 600():47-55. PubMed ID: 27117233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phenoxazinone Synthase-like Activity of Rationally Designed Heme Enzymes Based on Myoglobin.
    Sun LJ; Yuan H; Xu JK; Luo J; Lang JJ; Wen GB; Tan X; Lin YW
    Biochemistry; 2023 Jan; 62(2):369-377. PubMed ID: 34665595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct mechanisms for DNA cleavage by myoglobin with a designed heme active center.
    Zhao Y; Du KJ; Gao SQ; He B; Wen GB; Tan X; Lin YW
    J Inorg Biochem; 2016 Mar; 156():113-21. PubMed ID: 26775281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of heme iron coordination and protein structure in the dynamics and geminate rebinding of nitric oxide to the H93G myoglobin mutant: implications for nitric oxide sensors.
    Negrerie M; Kruglik SG; Lambry JC; Vos MH; Martin JL; Franzen S
    J Biol Chem; 2006 Apr; 281(15):10389-98. PubMed ID: 16476730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proximal ligand control of heme iron coordination structure and reactivity with hydrogen peroxide: investigations of the myoglobin cavity mutant H93G with unnatural oxygen donor proximal ligands.
    Roach MP; Puspita WJ; Watanabe Y
    J Inorg Biochem; 2000 Aug; 81(3):173-82. PubMed ID: 11051562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct roles of a tyrosine-associated hydrogen-bond network in fine-tuning the structure and function of heme proteins: two cases designed for myoglobin.
    Liao F; Yuan H; Du KJ; You Y; Gao SQ; Wen GB; Lin YW; Tan X
    Mol Biosyst; 2016 Oct; 12(10):3139-45. PubMed ID: 27476534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rational design of artificial dye-decolorizing peroxidases using myoglobin by engineering Tyr/Trp in the heme center.
    Li LL; Yuan H; Liao F; He B; Gao SQ; Wen GB; Tan X; Lin YW
    Dalton Trans; 2017 Aug; 46(34):11230-11238. PubMed ID: 28795725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and functional regulations by a disulfide bond designed in myoglobin like human neuroglobin.
    Sun LJ; Yuan H; Yu L; Gao SQ; Wen GB; Tan X; Lin YW
    Chem Commun (Camb); 2022 May; 58(39):5885-5888. PubMed ID: 35471205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Outer-Sphere Side Chain Substitutions on the Fate of the trans Iron-Nitrosyl Dimer in Heme/Nonheme Engineered Myoglobins (Fe(B)Mbs): Insights into the Mechanism of Denitrifying NO Reductases.
    Matsumura H; Chakraborty S; Reed J; Lu Y; Moënne-Loccoz P
    Biochemistry; 2016 Apr; 55(14):2091-9. PubMed ID: 27003474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of engineered myoglobins for biosynthesis of clofazimine by integration with chemical synthesis.
    Tang S; Sun LJ; Pan AQ; Huang J; Wang H; Lin YW
    Org Biomol Chem; 2023 Dec; 21(48):9603-9609. PubMed ID: 38014756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alteration of sperm whale myoglobin heme axial ligation by site-directed mutagenesis.
    Egeberg KD; Springer BA; Martinis SA; Sligar SG; Morikis D; Champion PM
    Biochemistry; 1990 Oct; 29(42):9783-91. PubMed ID: 2176857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and Engineering of an Efficient Peroxidase Using Myoglobin for Dye Decolorization and Lignin Bioconversion.
    Guo WJ; Xu JK; Wu ST; Gao SQ; Wen GB; Tan X; Lin YW
    Int J Mol Sci; 2021 Dec; 23(1):. PubMed ID: 35008837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of beta-lactamase activity by remote binding of heme: functional coupling of unrelated proteins through domain insertion.
    Edwards WR; Williams AJ; Morris JL; Baldwin AJ; Allemann RK; Jones DD
    Biochemistry; 2010 Aug; 49(31):6541-9. PubMed ID: 20602528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Replacement of the proximal ligand of sperm whale myoglobin with free imidazole in the mutant His-93-->Gly.
    Barrick D
    Biochemistry; 1994 May; 33(21):6546-54. PubMed ID: 8204590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The H93G myoglobin cavity mutant as a versatile template for modeling heme proteins: ferrous, ferric, and ferryl mixed-ligand complexes with imidazole in the cavity.
    Pond AE; Roach MP; Thomas MR; Boxer SG; Dawson JH
    Inorg Chem; 2000 Dec; 39(26):6061-6. PubMed ID: 11151505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of heme types in heme-copper oxidases: effects of replacing a heme b with a heme o mimic in an engineered heme-copper center in myoglobin.
    Wang N; Zhao X; Lu Y
    J Am Chem Soc; 2005 Nov; 127(47):16541-7. PubMed ID: 16305243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and kinetics of the beta-lactamase mutants S70A and K73H from Staphylococcus aureus PC1.
    Chen CC; Smith TJ; Kapadia G; Wäsch S; Zawadzke LE; Coulson A; Herzberg O
    Biochemistry; 1996 Sep; 35(38):12251-8. PubMed ID: 8823158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alteration of axial coordination by protein engineering in myoglobin. Bisimidazole ligation in the His64-->Val/Val68-->His double mutant.
    Dou Y; Admiraal SJ; Ikeda-Saito M; Krzywda S; Wilkinson AJ; Li T; Olson JS; Prince RC; Pickering IJ; George GN
    J Biol Chem; 1995 Jul; 270(27):15993-6001. PubMed ID: 7608158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.