BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 36500643)

  • 1. SnSe Nanosheets Mimic Lactate Dehydrogenase to Reverse Tumor Acid Microenvironment Metabolism for Enhancement of Tumor Therapy.
    Wang H; Wang B; Jiang J; Wu Y; Song A; Wang X; Yao C; Dai H; Xu J; Zhang Y; Ma Q; Xu F; Li R; Wang C
    Molecules; 2022 Dec; 27(23):. PubMed ID: 36500643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Designing Lactate Dehydrogenase-Mimicking SnSe Nanosheets To Reprogram Tumor-Associated Macrophages for Potentiation of Photothermal Immunotherapy.
    Ling J; Chang Y; Yuan Z; Chen Q; He L; Chen T
    ACS Appl Mater Interfaces; 2022 Jun; 14(24):27651-27665. PubMed ID: 35675569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LDH-A regulates the tumor microenvironment via HIF-signaling and modulates the immune response.
    Serganova I; Cohen IJ; Vemuri K; Shindo M; Maeda M; Mane M; Moroz E; Khanin R; Satagopan J; Koutcher JA; Blasberg R
    PLoS One; 2018; 13(9):e0203965. PubMed ID: 30248111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. O
    Sun L; Gao W; Liu J; Wang J; Li L; Yu H; Xu ZP
    ACS Appl Mater Interfaces; 2022 Dec; 14(51):56644-56657. PubMed ID: 36515637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tumor-derived lactate modifies antitumor immune response: effect on myeloid-derived suppressor cells and NK cells.
    Husain Z; Huang Y; Seth P; Sukhatme VP
    J Immunol; 2013 Aug; 191(3):1486-95. PubMed ID: 23817426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanodrug regulates lactic acid metabolism to reprogram the immunosuppressive tumor microenvironment for enhanced cancer immunotherapy.
    Tian LR; Lin MZ; Zhong HH; Cai YJ; Li B; Xiao ZC; Shuai XT
    Biomater Sci; 2022 Jul; 10(14):3892-3900. PubMed ID: 35686599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanofactory for metabolic and chemodynamic therapy: pro-tumor lactate trapping and anti-tumor ROS transition.
    He R; Zang J; Zhao Y; Liu Y; Ruan S; Zheng X; Chong G; Xu D; Yang Y; Yang Y; Zhang T; Gu J; Dong H; Li Y
    J Nanobiotechnology; 2021 Dec; 19(1):426. PubMed ID: 34922541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoenabled Modulation of Acidic Tumor Microenvironment Reverses Anergy of Infiltrating T Cells and Potentiates Anti-PD-1 Therapy.
    Zhang YX; Zhao YY; Shen J; Sun X; Liu Y; Liu H; Wang Y; Wang J
    Nano Lett; 2019 May; 19(5):2774-2783. PubMed ID: 30943039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lactate in the tumour microenvironment: From immune modulation to therapy.
    Wang ZH; Peng WB; Zhang P; Yang XP; Zhou Q
    EBioMedicine; 2021 Nov; 73():103627. PubMed ID: 34656878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Tumor Metabolic Microenvironment: Lessons from Lactate.
    García-Cañaveras JC; Chen L; Rabinowitz JD
    Cancer Res; 2019 Jul; 79(13):3155-3162. PubMed ID: 31171526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The oncogenic and clinical implications of lactate induced immunosuppression in the tumour microenvironment.
    Hayes C; Donohoe CL; Davern M; Donlon NE
    Cancer Lett; 2021 Mar; 500():75-86. PubMed ID: 33347908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lactate and lactylation: Behind the development of tumors.
    Dai E; Wang W; Li Y; Ye D; Li Y
    Cancer Lett; 2024 Jun; 591():216896. PubMed ID: 38641309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyphenol nanocomplex modulates lactate metabolic reprogramming and elicits immune responses to enhance cancer therapeutic effect.
    Zhang Z; Li X; Liu W; Chen G; Liu J; Ma Q; Hou P; Liang L; Liu C
    Drug Resist Updat; 2024 Mar; 73():101060. PubMed ID: 38309140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lactate/GPR81 recruits regulatory T cells by modulating CX3CL1 to promote immune resistance in a highly glycolytic gastric cancer.
    Su J; Mao X; Wang L; Chen Z; Wang W; Zhao C; Li G; Guo W; Hu Y
    Oncoimmunology; 2024; 13(1):2320951. PubMed ID: 38419759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymes involved in l-lactate metabolism in humans.
    Adeva M; González-Lucán M; Seco M; Donapetry C
    Mitochondrion; 2013 Nov; 13(6):615-29. PubMed ID: 24029012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lactate-Lactylation Hands between Metabolic Reprogramming and Immunosuppression.
    Chen L; Huang L; Gu Y; Cang W; Sun P; Xiang Y
    Int J Mol Sci; 2022 Oct; 23(19):. PubMed ID: 36233246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Remodeling of Tumor Microenvironment by Tumor-Targeting Nanozymes Enhances Immune Activation of CAR T Cells for Combination Therapy.
    Zhu L; Liu J; Zhou G; Liu TM; Dai Y; Nie G; Zhao Q
    Small; 2021 Oct; 17(43):e2102624. PubMed ID: 34378338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeted lactate dehydrogenase genes silencing in probiotic lactic acid bacteria: A possible paradigm shift in colorectal cancer treatment?
    Macharia JM; Kaposztas Z; Varjas T; Budán F; Zand A; Bodnar I; Bence RL
    Biomed Pharmacother; 2023 Apr; 160():114371. PubMed ID: 36758316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lactate shuttles at a glance: from physiological paradigms to anti-cancer treatments.
    Draoui N; Feron O
    Dis Model Mech; 2011 Nov; 4(6):727-32. PubMed ID: 22065843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acidity promotes the differentiation of immunosuppressive regulatory T cells.
    Tuomela K; Levings MK
    Eur J Immunol; 2023 Jun; 53(6):e2350511. PubMed ID: 37097063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.