BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 36500692)

  • 21. Assessment of the Porous Structure and Surface Chemistry of Activated Biocarbons Used for Methylene Blue Adsorption.
    Charmas B; Zięzio M; Jedynak K
    Molecules; 2023 Jun; 28(13):. PubMed ID: 37446585
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhanced sulfamethazine removal by steam-activated invasive plant-derived biochar.
    Rajapaksha AU; Vithanage M; Ahmad M; Seo DC; Cho JS; Lee SE; Lee SS; Ok YS
    J Hazard Mater; 2015 Jun; 290():43-50. PubMed ID: 25734533
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Preparation of mesoporous biogas residue biochar via a self-template strategy for efficient removal of ciprofloxacin: Effect of pyrolysis temperature.
    Zhang W; Zhang Y; Zhao M; Wang S; Fan X; Zhou N; Fan S
    J Environ Manage; 2024 Jun; 360():121140. PubMed ID: 38754190
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Preparation of biochars by conventional pyrolysis of herbal waste and their potential application for adsorption and energy purposes.
    Gęca M; Wiśniewska M; Nowicki P
    Chemphyschem; 2024 Feb; 25(4):e202300507. PubMed ID: 38200663
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Insights into aqueous carbofuran removal by modified and non-modified rice husk biochars.
    Mayakaduwa SS; Herath I; Ok YS; Mohan D; Vithanage M
    Environ Sci Pollut Res Int; 2017 Oct; 24(29):22755-22763. PubMed ID: 27553000
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Removal of Congo Red and Methylene Blue from Aqueous Solutions by Vermicompost-Derived Biochars.
    Yang G; Wu L; Xian Q; Shen F; Wu J; Zhang Y
    PLoS One; 2016; 11(5):e0154562. PubMed ID: 27144922
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Production of Activated Carbons from Food/Storage Waste.
    Wiśniewska M; Pawlak N; Sternik D; Pietrzak R; Nowicki P
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36836978
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Detoxification of fermentable broth with activated biocarbon resulting from pyrolysis of agroforestry residues.
    Martins AF; Villetti MA; Mortari SR; Pedroso GB; Saldanha LF; Rambo MKD
    Water Environ Res; 2021 Aug; 93(8):1445-1454. PubMed ID: 33378561
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of pyrolysis temperature on biochar properties and Cr(VI) adsorption from water with groundnut shell biochars: Mechanistic approach.
    Shakya A; Vithanage M; Agarwal T
    Environ Res; 2022 Dec; 215(Pt 1):114243. PubMed ID: 36063906
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pyrolysis of marine algae for biochar production for adsorption of Ciprofloxacin from aqueous solutions.
    Nguyen TB; Truong QM; Chen CW; Chen WH; Dong CD
    Bioresour Technol; 2022 May; 351():127043. PubMed ID: 35337990
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of modified biochars prepared at low pyrolysis temperature as an efficient adsorbent for atrazine removal.
    Zhao L; Yang F; Jiang Q; Zhu M; Jiang Z; Tang Y; Zhang Y
    Environ Sci Pollut Res Int; 2018 Jan; 25(2):1405-1417. PubMed ID: 29090437
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of process parameters on the surface and chemical properties of activated carbon obtained from biochar by chemical activation.
    Angın D; Altintig E; Köse TE
    Bioresour Technol; 2013 Nov; 148():542-9. PubMed ID: 24080293
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adsorption of Methyl Red and Methylene Blue on Carbon Bioadsorbents Obtained from Biogas Plant Waste Materials.
    Wolski R; Bazan-Wozniak A; Pietrzak R
    Molecules; 2023 Sep; 28(18):. PubMed ID: 37764488
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimization of atrazine and imidacloprid removal from water using biochars: Designing single or multi-staged batch adsorption systems.
    Mandal A; Singh N
    Int J Hyg Environ Health; 2017 May; 220(3):637-645. PubMed ID: 28433639
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanisms for cadmium adsorption by magnetic biochar composites in an aqueous solution.
    Khan ZH; Gao M; Qiu W; Islam MS; Song Z
    Chemosphere; 2020 May; 246():125701. PubMed ID: 31891847
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Renewable adsorbents from the solid residue of sewage sludge hydrothermal liquefaction for wastewater treatment.
    Saner A; Carvalho PN; Catalano J; Anastasakis K
    Sci Total Environ; 2022 Sep; 838(Pt 3):156418. PubMed ID: 35660599
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Preparation of carbonaceous materials from pyrolysis of chicken bones and its application for fuchsine adsorption.
    Côrtes LN; Druzian SP; Streit AFM; Sant'anna Cadaval Junior TR; Collazzo GC; Dotto GL
    Environ Sci Pollut Res Int; 2019 Oct; 26(28):28574-28583. PubMed ID: 30446910
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simultaneous Removal of Polymers with Different Ionic Character from Their Mixed Solutions Using Herb-Based Biochars and Activated Carbons.
    Gęca M; Wiśniewska M; Nowicki P
    Molecules; 2022 Nov; 27(21):. PubMed ID: 36364384
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Cadmium adsorption by biochar prepared from pyrolysis of silk waste at different temperatures].
    Ji HY; Wang YY; Lyu HH; Liu YX; Yang RQ; Yang SM
    Ying Yong Sheng Tai Xue Bao; 2018 Apr; 29(4):1328-1338. PubMed ID: 29726244
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of activated carbon synthesized by one-stage and two-stage co-pyrolysis from sludge and coconut shell.
    Yang B; Liu Y; Liang Q; Chen M; Ma L; Li L; Liu Q; Tu W; Lan D; Chen Y
    Ecotoxicol Environ Saf; 2019 Apr; 170():722-731. PubMed ID: 30580167
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.