BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 36500771)

  • 1. Colloidal Behavior and Biodegradation of Engineered Carbon-Based Nanomaterials in Aquatic Environment.
    Pikula K; Johari SA; Golokhvast K
    Nanomaterials (Basel); 2022 Nov; 12(23):. PubMed ID: 36500771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon Nanomaterials (CNMs) and Enzymes: From Nanozymes to CNM-Enzyme Conjugates and Biodegradation.
    Rozhin P; Abdel Monem Gamal J; Giordani S; Marchesan S
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wastewater treatment nexus: Carbon nanomaterials towards potential aquatic ecotoxicity.
    Zhang C; Chen X; Ho SH
    J Hazard Mater; 2021 Sep; 417():125959. PubMed ID: 33990041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Comparative Toxic Impact Assessment of Carbon Nanotubes, Fullerene, Graphene, and Graphene Oxide on Marine Microalgae
    Pikula K; Johari SA; Santos-Oliveira R; Golokhvast K
    Toxics; 2023 May; 11(6):. PubMed ID: 37368591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A natural vanishing act: the enzyme-catalyzed degradation of carbon nanomaterials.
    Kotchey GP; Hasan SA; Kapralov AA; Ha SH; Kim K; Shvedova AA; Kagan VE; Star A
    Acc Chem Res; 2012 Oct; 45(10):1770-81. PubMed ID: 22824066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advances in the application, toxicity and degradation of carbon nanomaterials in environment: A review.
    Peng Z; Liu X; Zhang W; Zeng Z; Liu Z; Zhang C; Liu Y; Shao B; Liang Q; Tang W; Yuan X
    Environ Int; 2020 Jan; 134():105298. PubMed ID: 31765863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toxicity and Biotransformation of Carbon-Based Nanomaterials in Marine Microalgae
    Pikula K; Johari SA; Santos-Oliveira R; Golokhvast K
    Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37373170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon nanomaterials alter plant physiology and soil bacterial community composition in a rice-soil-bacterial ecosystem.
    Hao Y; Ma C; Zhang Z; Song Y; Cao W; Guo J; Zhou G; Rui Y; Liu L; Xing B
    Environ Pollut; 2018 Jan; 232():123-136. PubMed ID: 28947315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon Nanomaterials and DNA: from Molecular Recognition to Applications.
    Sun H; Ren J; Qu X
    Acc Chem Res; 2016 Mar; 49(3):461-70. PubMed ID: 26907723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon nanomaterials-based electrochemical aptasensors.
    Wang Z; Yu J; Gui R; Jin H; Xia Y
    Biosens Bioelectron; 2016 May; 79():136-49. PubMed ID: 26703992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aptamer-conjugated carbon-based nanomaterials for cancer and bacteria theranostics: A review.
    Sargazi S; Er S; Mobashar A; Gelen SS; Rahdar A; Ebrahimi N; Hosseinikhah SM; Bilal M; Kyzas GZ
    Chem Biol Interact; 2022 Jul; 361():109964. PubMed ID: 35513013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon nanomaterials against pathogens; the antimicrobial activity of carbon nanotubes, graphene/graphene oxide, fullerenes, and their nanocomposites.
    Azizi-Lalabadi M; Hashemi H; Feng J; Jafari SM
    Adv Colloid Interface Sci; 2020 Oct; 284():102250. PubMed ID: 32966964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomedical Applications of Carbon Nanomaterials: Fullerenes, Quantum Dots, Nanotubes, Nanofibers, and Graphene.
    Gaur M; Misra C; Yadav AB; Swaroop S; Maolmhuaidh FÓ; Bechelany M; Barhoum A
    Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding the influence of carbon nanomaterials on microbial communities.
    Chen M; Sun Y; Liang J; Zeng G; Li Z; Tang L; Zhu Y; Jiang D; Song B
    Environ Int; 2019 May; 126():690-698. PubMed ID: 30875562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theranostic applications of multifunctional carbon nanomaterials.
    Asil SM; Guerrero ED; Bugarini G; Cayme J; De Avila N; Garcia J; Hernandez A; Mecado J; Madero Y; Moncayo F; Olmos R; Perches D; Roman J; Salcido-Padilla D; Sanchez E; Trejo C; Trevino P; Nurunnabi M; Narayan M
    View (Beijing); 2023 Apr; 4(2):. PubMed ID: 37426287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ecotoxicological effects of carbon based nanomaterials in aquatic organisms.
    Freixa A; Acuña V; Sanchís J; Farré M; Barceló D; Sabater S
    Sci Total Environ; 2018 Apr; 619-620():328-337. PubMed ID: 29154051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accumulation, transformation and subcellular distribution of arsenite associated with five carbon nanomaterials in freshwater zebrafish specific-tissues.
    Wang X; Liu L; Liang D; Liu Y; Zhao Q; Huang P; Li X; Fan W
    J Hazard Mater; 2021 Aug; 415():125579. PubMed ID: 33721782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative and mechanistic toxicity assessment of structure-dependent toxicity of carbon-based nanomaterials.
    Jiang T; Lin Y; Amadei CA; Gou N; Rahman SM; Lan J; Vecitis CD; Gu AZ
    J Hazard Mater; 2021 Sep; 418():126282. PubMed ID: 34111749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of bioaccumulation of nanoplastics, carbon nanotubes, fullerenes, and graphene family materials.
    Petersen E; Barrios AC; Bjorkland R; Goodwin DG; Li J; Waissi G; Henry T
    Environ Int; 2023 Mar; 173():107650. PubMed ID: 36848829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA-Mediated Assembly of Carbon Nanomaterials.
    Zhu X; Yan X; Yang S; Wang Y; Wang S; Tian Y
    Chempluschem; 2022 Apr; 87(5):e202200089. PubMed ID: 35589623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.