These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 36500792)

  • 1. Molecular Dynamics Simulations of the Mechanical Properties of Cellulose Nanocrystals-Graphene Layered Nanocomposites.
    Zhang X; Chen Z; Lu L; Wang J
    Nanomaterials (Basel); 2022 Nov; 12(23):. PubMed ID: 36500792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellulose Nanocrystals: Tensile Strength and Failure Mechanisms Revealed Using Reactive Molecular Dynamics.
    Gupta A; Khodayari A; van Duin ACT; Hirn U; Van Vuure AW; Seveno D
    Biomacromolecules; 2022 Jun; 23(6):2243-2254. PubMed ID: 35549173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning Glass Transition in Polymer Nanocomposites with Functionalized Cellulose Nanocrystals through Nanoconfinement.
    Qin X; Xia W; Sinko R; Keten S
    Nano Lett; 2015 Oct; 15(10):6738-44. PubMed ID: 26340693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stimuli-responsive self-assembly of cellulose nanocrystals (CNCs): Structures, functions, and biomedical applications.
    Ganguly K; Patel DK; Dutta SD; Shin WC; Lim KT
    Int J Biol Macromol; 2020 Jul; 155():456-469. PubMed ID: 32222290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Natural Biodegradable Poly(3-hydroxybutyrate-
    Li F; Yu HY; Wang YY; Zhou Y; Zhang H; Yao JM; Abdalkarim SYH; Tam KC
    J Agric Food Chem; 2019 Oct; 67(39):10954-10967. PubMed ID: 31365242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomic force microscopy reveals how relative humidity impacts the Young's modulus of lignocellulosic polymers and their adhesion with cellulose nanocrystals at the nanoscale.
    Marcuello C; Foulon L; Chabbert B; Aguié-Béghin V; Molinari M
    Int J Biol Macromol; 2020 Mar; 147():1064-1075. PubMed ID: 31743709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of elastic constants of functionalized graphene-based epoxy nanocomposites: a molecular modeling and MD simulation study.
    Yadav A; Kumar A; Sharma K; Pandey AK
    J Mol Model; 2022 May; 28(6):143. PubMed ID: 35543752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tough and strong bioinspired nanocomposites with interfacial cross-links.
    Liu N; Zeng X; Pidaparti R; Wang X
    Nanoscale; 2016 Nov; 8(43):18531-18540. PubMed ID: 27782267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical and Viscoelastic Properties of Stacked and Grafted Graphene/Graphene Oxide-Polyethylene Nanocomposites: A Coarse-Grained Molecular Dynamics Study.
    Singh PP; Ranganathan R
    ACS Omega; 2024 Feb; 9(8):9063-9075. PubMed ID: 38434848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiologically responsive, mechanically adaptive bio-nanocomposites for biomedical applications.
    Jorfi M; Roberts MN; Foster EJ; Weder C
    ACS Appl Mater Interfaces; 2013 Feb; 5(4):1517-26. PubMed ID: 23379302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly(3-hydroxybutyrate) Nanocomposites with Cellulose Nanocrystals.
    Usurelu CD; Badila S; Frone AN; Panaitescu DM
    Polymers (Basel); 2022 May; 14(10):. PubMed ID: 35631856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polycaprolactone Nanocomposites Reinforced with Cellulose Nanocrystals Surface-Modified via Covalent Grafting or Physisorption: A Comparative Study.
    Boujemaoui A; Cobo Sanchez C; Engström J; Bruce C; Fogelström L; Carlmark A; Malmström E
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):35305-35318. PubMed ID: 28895728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics simulation and characterization of graphene-cellulose nanocomposites.
    Rahman R; Foster JT; Haque A
    J Phys Chem A; 2013 Jun; 117(25):5344-53. PubMed ID: 23734912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid Graphenene Oxide/Cellulose Nanofillers to Enhance Mechanical and Barrier Properties of Chitosan-Based Composites.
    Santillo C; Wang Y; Buonocore GG; Gentile G; Verdolotti L; Kaciulis S; Xia H; Lavorgna M
    Front Chem; 2022; 10():926364. PubMed ID: 35958229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioinspired layered materials with superior mechanical performance.
    Cheng Q; Jiang L; Tang Z
    Acc Chem Res; 2014 Apr; 47(4):1256-66. PubMed ID: 24635413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cassava starch-based films plasticized with sucrose and inverted sugar and reinforced with cellulose nanocrystals.
    da Silva JB; Pereira FV; Druzian JI
    J Food Sci; 2012 Jun; 77(6):N14-9. PubMed ID: 22582979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aqueous Dispersion of Carbon Nanomaterials with Cellulose Nanocrystals: An Investigation of Molecular Interactions.
    Aramfard M; Kaynan O; Hosseini E; Zakertabrizi M; Pérez LM; Asadi A
    Small; 2022 Sep; 18(37):e2202216. PubMed ID: 35902243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellulose nanocrystals from grape pomace and their use for the development of starch-based nanocomposite films.
    Coelho CCS; Silva RBS; Carvalho CWP; Rossi AL; Teixeira JA; Freitas-Silva O; Cabral LMC
    Int J Biol Macromol; 2020 Sep; 159():1048-1061. PubMed ID: 32407944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bio-based nanocomposites obtained through covalent linkage between chitosan and cellulose nanocrystals.
    de Mesquita JP; Donnici CL; Teixeira IF; Pereira FV
    Carbohydr Polym; 2012 Sep; 90(1):210-7. PubMed ID: 24751032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The fabrication of polylactide/cellulose nanocomposites with enhanced crystallization and mechanical properties.
    Chai H; Chang Y; Zhang Y; Chen Z; Zhong Y; Zhang L; Sui X; Xu H; Mao Z
    Int J Biol Macromol; 2020 Jul; 155():1578-1588. PubMed ID: 31751689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.