These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 36500849)

  • 1. Plasmonic Sensing and Switches Enriched by Tailorable Multiple Fano Resonances in Rotational Misalignment Metasurfaces.
    Xu X; Luo XQ; Liu Q; Li Y; Zhu W; Chen Z; Liu W; Wang XL
    Nanomaterials (Basel); 2022 Nov; 12(23):. PubMed ID: 36500849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Near-infrared plasmonic sensing and digital metasurface via double Fano resonances.
    Xu X; Luo XQ; Zhang J; Zhu W; Chen Z; Li TF; Liu WM; Wang XL
    Opt Express; 2022 Feb; 30(4):5879-5895. PubMed ID: 35209541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-Wavelength Selective and Broadband Near-Infrared Plasmonic Switches in Anisotropic Plasmonic Metasurfaces.
    Li Y; Zhou Y; Liu Q; Lu Z; Luo XQ; Liu WM; Wang XL
    Nanomaterials (Basel); 2023 Dec; 13(24):. PubMed ID: 38133038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly controllable double Fano resonances in plasmonic metasurfaces.
    Liu Z; Ye J
    Nanoscale; 2016 Oct; 8(40):17665-17674. PubMed ID: 27714114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering Fano resonances in plasmonic metasurfaces for colorimetric sensing and structural colors.
    Kohandani R; Saini SS
    Nanotechnology; 2024 Oct; 36(1):. PubMed ID: 39374618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphene Multiple Fano Resonances Based on Asymmetric Hybrid Metamaterial.
    Yan Z; Zhang Z; Du W; Wu W; Hu T; Yu Z; Gu P; Chen J; Tang C
    Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33276469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards scalable plasmonic Fano-resonant metasurfaces for colorimetric sensing.
    Cerjan B; Gerislioglu B; Link S; Nordlander P; Halas NJ; Griep MH
    Nanotechnology; 2022 Jul; 33(40):. PubMed ID: 35732108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple Fano resonances with flexible tunablity based on symmetry-breaking resonators.
    Ren XB; Ren K; Zhang Y; Ming CG; Han Q
    Beilstein J Nanotechnol; 2019; 10():2459-2467. PubMed ID: 31921524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single protein sensing with asymmetric plasmonic hexamer via Fano resonance enhanced two-photon luminescence.
    Deng HD; Chen XY; Xu Y; Miroshnichenko AE
    Nanoscale; 2015 Dec; 7(48):20405-13. PubMed ID: 26451715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical sensing based on multimode Fano resonances in metal-insulator-metal waveguide systems with X-shaped resonant cavities.
    Li J; Chen J; Liu X; Tian H; Wang J; Cui J; Rohimah S
    Appl Opt; 2021 Jun; 60(18):5312-5319. PubMed ID: 34263768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple Fano resonances excitation on all-dielectric nanohole arrays metasurfaces.
    Yang L; Yu S; Li H; Zhao T
    Opt Express; 2021 May; 29(10):14905-14916. PubMed ID: 33985202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Double Fano resonances in hybrid disk/rod artificial plasmonic molecules based on dipole-quadrupole coupling.
    Chen Z; Zhang S; Chen Y; Liu Y; Li P; Wang Z; Zhu X; Bi K; Duan H
    Nanoscale; 2020 May; 12(17):9776-9785. PubMed ID: 32324182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fano-resonance-assisted metasurface for color routing.
    Yan C; Yang KY; Martin OJF
    Light Sci Appl; 2017 Jul; 6(7):e17017. PubMed ID: 30167273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Double Fano Resonance and Independent Regulation Characteristics in a Rectangular-like Nanotetramer Metasurface Structure.
    Zhang Z; Zhang Q; Li B; Zang J; Cao X; Zhao X; Xue C
    Nanomaterials (Basel); 2022 Oct; 12(19):. PubMed ID: 36234607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polarization-selective dynamically tunable multispectral Fano resonances: decomposing of subgroup plasmonic resonances.
    Liu J; Zhao X; Gong R; Wu T; Gong C; Shao X
    Opt Express; 2015 Oct; 23(21):27343-53. PubMed ID: 26480396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonic Spectral Splitting in Ring/Rod Metasurface.
    Muhammad N; Khan AD; Deng ZL; Khan K; Yadav A; Liu Q; Ouyang Z
    Nanomaterials (Basel); 2017 Nov; 7(11):. PubMed ID: 29156591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fano-Enhanced Circular Dichroism in Deformable Stereo Metasurfaces.
    Liu Z; Xu Y; Ji CY; Chen S; Li X; Zhang X; Yao Y; Li J
    Adv Mater; 2020 Feb; 32(8):e1907077. PubMed ID: 31944433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable Nanosensor Based on Fano Resonances Created by Changing the Deviation Angle of the Metal Core in a Plasmonic Cavity.
    Wang Q; Ouyang Z; Sun Y; Lin M; Liu Q; Zheng G; Fan J
    Sensors (Basel); 2018 Mar; 18(4):. PubMed ID: 29596341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Origin of plasmonic Fano resonance in metal-hole/split-ring-resonator metamaterials disclosed by temporal coupled-mode theory.
    Deng Q; Lin H; Li ZY
    Opt Express; 2023 Sep; 31(20):32322-32334. PubMed ID: 37859038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable Fano Resonance and Enhanced Sensing in a Simple Au/TiO
    He Z; Xue W; Cui W; Li C; Li Z; Pu L; Feng J; Xiao X; Wang X; Li AG
    Nanomaterials (Basel); 2020 Apr; 10(4):. PubMed ID: 32260584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.