These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 36500849)

  • 21. Enhancement of second-harmonic generation from Fano plasmonic metasurfaces by introducing structural asymmetries.
    Liu Y; Gui L; Xu K
    Opt Express; 2022 Nov; 30(23):42440-42453. PubMed ID: 36366698
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Beyond Conventional Sensing: Hybrid Plasmonic Metasurfaces and Bound States in the Continuum.
    Bosomtwi D; Babicheva VE
    Nanomaterials (Basel); 2023 Apr; 13(7):. PubMed ID: 37049354
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Double Fano resonances in individual metallic nanostructure for high sensing sensitivity.
    Yan Z; Wen X; Gu P; Huang Z; Zhan P; Chen Z; Wang Z
    Nanotechnology; 2017 Jul; ():. PubMed ID: 28743841
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Independently Tunable Fano Resonances Based on the Coupled Hetero-Cavities in a Plasmonic MIM System.
    Wang Q; Ouyang Z; Lin M; Liu Q
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30201870
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Polarization-Tuned Fano Resonances in All-Dielectric Short-Wave Infrared Metasurface.
    Attiaoui A; Daligou G; Assali S; Skibitzki O; Schroeder T; Moutanabbir O
    Adv Mater; 2023 Jul; 35(28):e2300595. PubMed ID: 37015255
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Polarization-Independent Multiple Fano Resonances in Plasmonic Nonamers for Multimode-Matching Enhanced Multiband Second-Harmonic Generation.
    Liu SD; Leong ES; Li GC; Hou Y; Deng J; Teng JH; Ong HC; Lei DY
    ACS Nano; 2016 Jan; 10(1):1442-53. PubMed ID: 26727133
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High Quality Plasmonic Sensors Based on Fano Resonances Created through Cascading Double Asymmetric Cavities.
    Zhang X; Shao M; Zeng X
    Sensors (Basel); 2016 Oct; 16(10):. PubMed ID: 27763539
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fano resonances in metasurfaces made of linear trimers of plasmonic nanoparticles.
    Campione S; Guclu C; Ragan R; Capolino F
    Opt Lett; 2013 Dec; 38(24):5216-9. PubMed ID: 24322221
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tunable Multipolar Fano Resonances and Electric Field Enhancements in Au Ring-Disk Plasmonic Nanostructures.
    Qiu R; Lin H; Huang J; Liang C; Yi Z
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30200419
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of Plasmon Resonances and Symmetry Effects on Second Harmonic Generation in WS
    Spreyer F; Ruppert C; Georgi P; Zentgraf T
    ACS Nano; 2021 Oct; 15(10):16719-16728. PubMed ID: 34606724
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tunable multiple Fano resonances based on a plasmonic metal-insulator-metal structure for nano-sensing and plasma blood sensing applications.
    Rohimah S; Tian H; Wang J; Chen J; Li J; Liu X; Cui J; Hao Y
    Appl Opt; 2022 Feb; 61(6):1275-1283. PubMed ID: 35201006
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Self-reference plasmonic sensors based on double Fano resonances.
    Wang Y; Sun C; Li H; Gong Q; Chen J
    Nanoscale; 2017 Aug; 9(31):11085-11092. PubMed ID: 28741643
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optical-fibre characteristics based on Fano resonances and sensor application in blood glucose detection.
    Zhu J; Yin J
    Opt Express; 2022 Jul; 30(15):26749-26760. PubMed ID: 36236861
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Double Fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity.
    Wang J; Fan C; He J; Ding P; Liang E; Xue Q
    Opt Express; 2013 Jan; 21(2):2236-44. PubMed ID: 23389204
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optical nanoantenna with muitiple surface plasmon resonances for enhancements in near-field intensity and far-field radiation.
    Liu S; Ju P; Lv L; Tang P; Wang H; Zhong L; Lu X
    Opt Express; 2021 Oct; 29(22):35678-35690. PubMed ID: 34808997
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fano-resonance-based mode-matching hybrid metasurface for enhanced second-harmonic generation.
    Li Z; Liu W; Li Z; Cheng H; Chen S; Tian J
    Opt Lett; 2017 Aug; 42(16):3117-3120. PubMed ID: 28809887
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Double Fano resonances in an individual metallic nanostructure for high sensing sensitivity.
    Yan Z; Wen X; Gu P; Zhong H; Zhan P; Chen Z; Wang Z
    Nanotechnology; 2017 Oct; 28(47):475203. PubMed ID: 29086757
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tunable multiple Fano resonance employing polarization-selective excitation of coupled surface-mode and nanoslit antenna resonance in plasmonic nanostructures.
    Liu J; Liu Z; Hu H
    Sci Rep; 2019 Feb; 9(1):2414. PubMed ID: 30787371
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multiple Fano resonances in plasmonic heptamer clusters composed of split nanorings.
    Liu SD; Yang Z; Liu RP; Li XY
    ACS Nano; 2012 Jul; 6(7):6260-71. PubMed ID: 22680404
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fano resonances and all-optical switching in a resonantly coupled plasmonic-atomic system.
    Stern L; Grajower M; Levy U
    Nat Commun; 2014 Sep; 5():4865. PubMed ID: 25197947
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.