BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 36500922)

  • 1. Impact of Interfaces, and Nanostructure on the Performance of Conjugated Polymer Photocatalysts for Hydrogen Production from Water.
    McQueen E; Bai Y; Sprick RS
    Nanomaterials (Basel); 2022 Dec; 12(23):. PubMed ID: 36500922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conjugated Microporous Polymer Nanosheets for Overall Water Splitting Using Visible Light.
    Wang L; Wan Y; Ding Y; Wu S; Zhang Y; Zhang X; Zhang G; Xiong Y; Wu X; Yang J; Xu H
    Adv Mater; 2017 Oct; 29(38):. PubMed ID: 28833545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photocatalytic Water-Splitting by Organic Conjugated Polymers: Opportunities and Challenges.
    Mansha M; Ahmad T; Ullah N; Akram Khan S; Ashraf M; Ali S; Tan B; Khan I
    Chem Rec; 2022 Jul; 22(7):e202100336. PubMed ID: 35257485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conjugated Polymers: Catalysts for Photocatalytic Hydrogen Evolution.
    Zhang G; Lan ZA; Wang X
    Angew Chem Int Ed Engl; 2016 Dec; 55(51):15712-15727. PubMed ID: 27528426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Revisiting the Limiting Factors for Overall Water-Splitting on Organic Photocatalysts.
    Rahman M; Tian H; Edvinsson T
    Angew Chem Int Ed Engl; 2020 Sep; 59(38):16278-16293. PubMed ID: 32329950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation, characterization, evaluation and mechanistic study of organic polymer nano-photocatalysts for solar fuel production.
    Pavliuk MV; Wrede S; Liu A; Brnovic A; Wang S; Axelsson M; Tian H
    Chem Soc Rev; 2022 Aug; 51(16):6909-6935. PubMed ID: 35912574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances in visible-light-responsive photocatalysts for hydrogen production and solar energy conversion--from semiconducting TiO2 to MOF/PCP photocatalysts.
    Horiuchi Y; Toyao T; Takeuchi M; Matsuoka M; Anpo M
    Phys Chem Chem Phys; 2013 Aug; 15(32):13243-53. PubMed ID: 23760469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photocatalytic overall water splitting by conjugated semiconductors with crystalline poly(triazine imide) frameworks.
    Lin L; Wang C; Ren W; Ou H; Zhang Y; Wang X
    Chem Sci; 2017 Aug; 8(8):5506-5511. PubMed ID: 28970930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pathways towards Boosting Solar-Driven Hydrogen Evolution of Conjugated Polymers.
    Liu Y; Li B; Xiang Z
    Small; 2021 Aug; 17(34):e2007576. PubMed ID: 34160904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid materials based on conjugated polymers and inorganic semiconductors as photocatalysts: from environmental to energy applications.
    Liras M; Barawi M; de la Peña O'Shea VA
    Chem Soc Rev; 2019 Nov; 48(22):5454-5487. PubMed ID: 31608912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent development of organic-inorganic hybrid photocatalysts for biomass conversion into hydrogen production.
    Augustin A; Chuaicham C; Shanmugam M; Vellaichamy B; Rajendran S; Hoang TKA; Sasaki K; Sekar K
    Nanoscale Adv; 2022 Jun; 4(12):2561-2582. PubMed ID: 36132286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 2D Polymers as Emerging Materials for Photocatalytic Overall Water Splitting.
    Wang L; Zhang Y; Chen L; Xu H; Xiong Y
    Adv Mater; 2018 Nov; 30(48):e1801955. PubMed ID: 30033628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal-Organic Framework-Based Photocatalysis for Solar Fuel Production.
    Xiao JD; Li R; Jiang HL
    Small Methods; 2023 Jan; 7(1):e2201258. PubMed ID: 36456462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Semiconductor Nanomaterial Photocatalysts for Water-Splitting Hydrogen Production: The Holy Grail of Converting Solar Energy to Fuel.
    Mohsin M; Ishaq T; Bhatti IA; Maryam ; Jilani A; Melaibari AA; Abu-Hamdeh NH
    Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bisulfone-Functionalized Organic Polymer Photocatalysts for High-Performance Hydrogen Evolution.
    Shu C; Zhao Y; Zhang C; Gao X; Ma W; Ren SB; Wang F; Chen Y; Zeng JH; Jiang JX
    ChemSusChem; 2020 Jan; 13(2):369-375. PubMed ID: 31755236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Designing Nanoengineered Photocatalysts for Hydrogen Generation by Water Splitting and Conversion of Carbon Dioxide to Clean Fuels.
    Bhosale R; Debnath B; Ogale S
    Chem Rec; 2022 Sep; 22(9):e202200110. PubMed ID: 35758532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoporous and nonporous conjugated donor-acceptor polymer semiconductors for photocatalytic hydrogen production.
    Sheng ZQ; Xing YQ; Chen Y; Zhang G; Liu SY; Chen L
    Beilstein J Nanotechnol; 2021; 12():607-623. PubMed ID: 34285864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbazolic Conjugated Microporous Polymers for Photocatalytic Organic Transformations.
    Zhang W; Shu C; Cui H; Wan Q; Au CT; Yi B; Yang H
    Macromol Rapid Commun; 2023 Apr; 44(8):e2300012. PubMed ID: 36854889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Boosting the Photocatalytic Hydrogen Evolution Activity for D-π-A Conjugated Microporous Polymers by Statistical Copolymerization.
    Shu C; Han C; Yang X; Zhang C; Chen Y; Ren S; Wang F; Huang F; Jiang JX
    Adv Mater; 2021 Jul; 33(26):e2008498. PubMed ID: 34028900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multinary I-III-VI2 and I2-II-IV-VI4 Semiconductor Nanostructures for Photocatalytic Applications.
    Regulacio MD; Han MY
    Acc Chem Res; 2016 Mar; 49(3):511-9. PubMed ID: 26864703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.