BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 36501344)

  • 1. The Green Leaf Volatile (Z)-3-Hexenyl Acetate Is Differently Emitted by Two Varieties of
    Frontini A; De Bellis L; Luvisi A; Blando F; Allah SM; Dimita R; Mininni C; Accogli R; Negro C
    Plants (Basel); 2022 Nov; 11(23):. PubMed ID: 36501344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolomics Reveal Induction of ROS Production and Glycosylation Events in Wheat Upon Exposure to the Green Leaf Volatile Z-3-Hexenyl Acetate.
    Ameye M; Van Meulebroek L; Meuninck B; Vanhaecke L; Smagghe G; Haesaert G; Audenaert K
    Front Plant Sci; 2020; 11():596271. PubMed ID: 33343599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Priming defense genes and metabolites in hybrid poplar by the green leaf volatile cis-3-hexenyl acetate.
    Frost CJ; Mescher MC; Dervinis C; Davis JM; Carlson JE; De Moraes CM
    New Phytol; 2008; 180(3):722-734. PubMed ID: 18721163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tea green leafhopper, Empoasca vitis, chooses suitable host plants by detecting the emission level of (3Z)-hexenyl acetate.
    Xin ZJ; Li XW; Bian L; Sun XL
    Bull Entomol Res; 2017 Feb; 107(1):77-84. PubMed ID: 27444230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Processing of Airborne Green Leaf Volatiles for Their Glycosylation in the Exposed Plants.
    Sugimoto K; Iijima Y; Takabayashi J; Matsui K
    Front Plant Sci; 2021; 12():721572. PubMed ID: 34868107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteomics and phosphoproteomics reveal the different drought-responsive mechanisms of priming with (Z)-3-hexenyl acetate in two tea cultivars.
    Wang S; Gu H; Chen S; Li Y; Shen J; Wang Y; Ding Z
    J Proteomics; 2023 Oct; 289():105010. PubMed ID: 37797878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptome analysis of
    Yamauchi Y; Matsuda A; Matsuura N; Mizutani M; Sugimoto Y
    J Pestic Sci; 2018 Aug; 43(3):207-213. PubMed ID: 30363142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effective distance of volatile cues for plant-plant communication in beech.
    Hagiwara T; Ishihara MI; Takabayashi J; Hiura T; Shiojiri K
    Ecol Evol; 2021 Sep; 11(18):12445-12452. PubMed ID: 34594511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Costs of Green Leaf Volatile-Induced Defense Priming: Temporal Diversity in Growth Responses to Mechanical Wounding and Insect Herbivory.
    Engelberth J; Engelberth M
    Plants (Basel); 2019 Jan; 8(1):. PubMed ID: 30669247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wound-induced green leaf volatiles cause the release of acetylated derivatives and a terpenoid in maize.
    Yan ZG; Wang CZ
    Phytochemistry; 2006 Jan; 67(1):34-42. PubMed ID: 16310233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Airborne signals prime plants against insect herbivore attack.
    Engelberth J; Alborn HT; Schmelz EA; Tumlinson JH
    Proc Natl Acad Sci U S A; 2004 Feb; 101(6):1781-5. PubMed ID: 14749516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Green leaf volatile production by plants: a meta-analysis.
    Ameye M; Allmann S; Verwaeren J; Smagghe G; Haesaert G; Schuurink RC; Audenaert K
    New Phytol; 2018 Nov; 220(3):666-683. PubMed ID: 28665020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential metabolisms of green leaf volatiles in injured and intact parts of a wounded leaf meet distinct ecophysiological requirements.
    Matsui K; Sugimoto K; Mano J; Ozawa R; Takabayashi J
    PLoS One; 2012; 7(4):e36433. PubMed ID: 22558466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Priming Seeds with Indole and (Z)-3-Hexenyl Acetate Enhances Resistance Against Herbivores and Stimulates Growth.
    Maurya AK; Pazouki L; Frost CJ
    J Chem Ecol; 2022 Apr; 48(4):441-454. PubMed ID: 35394556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular analysis of broad-spectrum induced resistance in rice by the green leaf volatile Z-3-hexenyl acetate.
    Desmedt W; Ameye M; Filipe O; De Waele E; Van Nieuwerburgh F; Deforce D; Van Meulebroek L; Vanhaecke L; Kyndt T; Höfte M; Audenaert K
    J Exp Bot; 2023 Nov; 74(21):6804-6819. PubMed ID: 37624920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Herbivore-induced volatile emissions from cotton (Gossypium hirsutum L.) seedlings.
    McCall PJ; Turlings TC; Loughrin J; Proveaux AT; Tumlinson JH
    J Chem Ecol; 1994 Dec; 20(12):3039-50. PubMed ID: 24241975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Volatile-mediated signalling in barley induces metabolic reprogramming and resistance against the biotrophic fungus Blumeria hordei.
    Laupheimer S; Kurzweil L; Proels R; Unsicker SB; Stark TD; Dawid C; Hückelhoven R
    Plant Biol (Stuttg); 2023 Jan; 25(1):72-84. PubMed ID: 36377298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of a Hexenal Reductase That Modulates the Composition of Green Leaf Volatiles.
    Tanaka T; Ikeda A; Shiojiri K; Ozawa R; Shiki K; Nagai-Kunihiro N; Fujita K; Sugimoto K; Yamato KT; Dohra H; Ohnishi T; Koeduka T; Matsui K
    Plant Physiol; 2018 Oct; 178(2):552-564. PubMed ID: 30126866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Volatile compounds from Salix spp. varieties differing in susceptibility to three willow beetle species.
    Peacock L; Lewis M; Powers S
    J Chem Ecol; 2001 Oct; 27(10):1943-51. PubMed ID: 11710603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plant communication across different environmental contexts suggests a role for stomata in volatile perception.
    Aguirre NM; Grunseich JM; Lima AF; Davis SD; Helms AM
    Plant Cell Environ; 2023 Jul; 46(7):2017-2030. PubMed ID: 37165940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.