BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 36501545)

  • 1. Controlled and Synchronised Vascular Regeneration upon the Implantation of Iloprost- and Cationic Amphiphilic Drugs-Conjugated Tissue-Engineered Vascular Grafts into the Ovine Carotid Artery: A Proteomics-Empowered Study.
    Antonova L; Kutikhin A; Sevostianova V; Lobov A; Repkin E; Krivkina E; Velikanova E; Mironov A; Mukhamadiyarov R; Senokosova E; Khanova M; Shishkova D; Markova V; Barbarash L
    Polymers (Basel); 2022 Nov; 14(23):. PubMed ID: 36501545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tissue-Engineered Carotid Artery Interposition Grafts Demonstrate High Primary Patency and Promote Vascular Tissue Regeneration in the Ovine Model.
    Antonova LV; Krivkina EO; Sevostianova VV; Mironov AV; Rezvova MA; Shabaev AR; Tkachenko VO; Krutitskiy SS; Khanova MY; Sergeeva TY; Matveeva VG; Glushkova TV; Kutikhin AG; Mukhamadiyarov RA; Deeva NS; Akentieva TN; Sinitsky MY; Velikanova EA; Barbarash LS
    Polymers (Basel); 2021 Aug; 13(16):. PubMed ID: 34451177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and in vivo evaluation of small-diameter vascular grafts engineered by outgrowth endothelial cells and electrospun chitosan/poly(ε-caprolactone) nanofibrous scaffolds.
    Zhou M; Qiao W; Liu Z; Shang T; Qiao T; Mao C; Liu C
    Tissue Eng Part A; 2014 Jan; 20(1-2):79-91. PubMed ID: 23902162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tissue-Engineered Small Diameter Arterial Vascular Grafts from Cell-Free Nanofiber PCL/Chitosan Scaffolds in a Sheep Model.
    Fukunishi T; Best CA; Sugiura T; Shoji T; Yi T; Udelsman B; Ohst D; Ong CS; Zhang H; Shinoka T; Breuer CK; Johnson J; Hibino N
    PLoS One; 2016; 11(7):e0158555. PubMed ID: 27467821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Corrugated nanofiber tissue-engineered vascular graft to prevent kinking for arteriovenous shunts in an ovine model.
    Matsushita H; Inoue T; Abdollahi S; Yeung E; Ong CS; Lui C; Pitaktong I; Nelson K; Johnson J; Hibino N
    JVS Vasc Sci; 2020; 1():100-108. PubMed ID: 34617042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of the Patency and Regenerative Potential of Biodegradable Vascular Prostheses of Different Polymer Compositions in an Ovine Model.
    Antonova LV; Sevostianova VV; Silnikov VN; Krivkina EO; Velikanova EA; Mironov AV; Shabaev AR; Senokosova EA; Khanova MY; Glushkova TV; Akentieva TN; Sinitskaya AV; Markova VE; Shishkova DK; Lobov AA; Repkin EA; Stepanov AD; Kutikhin AG; Barbarash LS
    Int J Mol Sci; 2023 May; 24(10):. PubMed ID: 37239889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel reinforcement of corrugated nanofiber tissue-engineered vascular graft to prevent aneurysm formation for arteriovenous shunts in an ovine model.
    Matsushita H; Hayashi H; Nurminsky K; Dunn T; He Y; Pitaktong I; Koda Y; Xu S; Nguyen V; Inoue T; Rodgers D; Nelson K; Johnson J; Hibino N
    JVS Vasc Sci; 2022; 3():182-191. PubMed ID: 35495567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improvement of a Novel Small-diameter Tissue-engineered Arterial Graft With Heparin Conjugation.
    Matsuzaki Y; Miyamoto S; Miyachi H; Iwaki R; Shoji T; Blum K; Chang YC; Kelly J; Reinhardt JW; Nakayama H; Breuer CK; Shinoka T
    Ann Thorac Surg; 2021 Apr; 111(4):1234-1241. PubMed ID: 32946845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The loading of C-type natriuretic peptides improved hemocompatibility and vascular regeneration of electrospun poly(ε-caprolactone) grafts.
    Li J; Zhuo N; Zhang J; Sun Q; Si J; Wang K; Zhi D
    Acta Biomater; 2022 Oct; 151():304-316. PubMed ID: 36002127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast-Degrading Tissue-Engineered Vascular Grafts Lead to Increased Extracellular Matrix Cross-Linking Enzyme Expression.
    Fukunishi T; Ong CS; He YJ; Inoue T; Zhang H; Steppan J; Matsushita H; Johnson J; Santhanam L; Hibino N
    Tissue Eng Part A; 2021 Nov; 27(21-22):1368-1375. PubMed ID: 33599167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tissue engineering of small-diameter vascular grafts by endothelial progenitor cells seeding heparin-coated decellularized scaffolds.
    Zhou M; Liu Z; Liu C; Jiang X; Wei Z; Qiao W; Ran F; Wang W; Qiao T; Liu C
    J Biomed Mater Res B Appl Biomater; 2012 Jan; 100(1):111-20. PubMed ID: 22113845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Brief Report on an Implantation of Small-Caliber Biodegradable Vascular Grafts in a Carotid Artery of the Sheep.
    Antonova LV; Mironov AV; Yuzhalin AE; Krivkina EO; Shabaev AR; Rezvova MA; Tkachenko VO; Khanova MY; Sergeeva TY; Krutitskiy SS; Barbarash LS
    Pharmaceuticals (Basel); 2020 May; 13(5):. PubMed ID: 32455730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of implantation site on outcome of tissue-engineered vascular grafts.
    Sologashvili T; Saat SA; Tille JC; De Valence S; Mugnai D; Giliberto JP; Dillon J; Yakub A; Dimon Z; Gurny R; Walpoth BH; Moeller M
    Eur J Pharm Biopharm; 2019 Jun; 139():272-278. PubMed ID: 31004790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile fabrication of copper-incorporating poly(ε-caprolactone)/keratin mats for tissue-engineered vascular grafts with the potential of catalytic nitric oxide generation.
    Miao C; Du J; Dou J; Wang C; Wang L; Yuan J; Shen J; Yin M
    J Mater Chem B; 2022 Aug; 10(32):6158-6170. PubMed ID: 35904091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of Electrospun Phenylalanine/Poly-ε-Caprolactone Chiral Hybrid Scaffolds to Promote Endothelial Remodeling.
    Sun B; Hou L; Sun B; Han Y; Zou Y; Huang J; Zhang Y; Feng C; Dou X; Xu F
    Front Bioeng Biotechnol; 2021; 9():773635. PubMed ID: 34900965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for in vivo growth potential and vascular remodeling of tissue-engineered artery.
    Cho SW; Kim IK; Kang JM; Song KW; Kim HS; Park CH; Yoo KJ; Kim BS
    Tissue Eng Part A; 2009 Apr; 15(4):901-12. PubMed ID: 18783324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preclinical study of patient-specific cell-free nanofiber tissue-engineered vascular grafts using 3-dimensional printing in a sheep model.
    Fukunishi T; Best CA; Sugiura T; Opfermann J; Ong CS; Shinoka T; Breuer CK; Krieger A; Johnson J; Hibino N
    J Thorac Cardiovasc Surg; 2017 Apr; 153(4):924-932. PubMed ID: 27938900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Review: Tissue Engineering of Small-Diameter Vascular Grafts and Their In Vivo Evaluation in Large Animals and Humans.
    Fang S; Ellman DG; Andersen DC
    Cells; 2021 Mar; 10(3):. PubMed ID: 33807009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peritoneal pre-conditioning impacts long-term vascular graft patency and remodeling.
    Sameti M; Shojaee M; Saleh BM; Moore LK; Bashur CA
    Biomater Adv; 2023 May; 148():213386. PubMed ID: 36948108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of Small-Diameter Tissue-Engineered Vascular Grafts Electrospun from Heparin End-Capped PCL and Evaluation in a Rabbit Carotid Artery Replacement Model.
    Jin X; Geng X; Jia L; Xu Z; Ye L; Gu Y; Zhang AY; Feng ZG
    Macromol Biosci; 2019 Aug; 19(8):e1900114. PubMed ID: 31222914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.