BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 36501592)

  • 41. The Rietveld method as a tool to quantify the amorphous amount of microcrystalline cellulose.
    De Figueiredo LP; Ferreira FF
    J Pharm Sci; 2014 May; 103(5):1394-9. PubMed ID: 24590572
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A novel approach for calculating starch crystallinity and its correlation with double helix content: a combined XRD and NMR study.
    Lopez-Rubio A; Flanagan BM; Gilbert EP; Gidley MJ
    Biopolymers; 2008 Sep; 89(9):761-8. PubMed ID: 18428208
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Sensing the structural differences in cellulose from apple and bacterial cell wall materials by Raman and FT-IR spectroscopy.
    Szymańska-Chargot M; Cybulska J; Zdunek A
    Sensors (Basel); 2011; 11(6):5543-60. PubMed ID: 22163913
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Utilization of corncob acid hydrolysate for bacterial cellulose production by Gluconacetobacter xylinus.
    Huang C; Yang XY; Xiong L; Guo HJ; Luo J; Wang B; Zhang HR; Lin XQ; Chen XD
    Appl Biochem Biotechnol; 2015 Feb; 175(3):1678-88. PubMed ID: 25422061
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Insights into the production and physicochemical properties of oxycellulose microcrystalline with coexisting crystalline forms.
    Ahmed-Haras MR; Kao N; Ward L; Islam MS
    Int J Biol Macromol; 2020 Mar; 146():150-161. PubMed ID: 31837363
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Analysis of crystallinity changes in cellulose II polymers using carbohydrate-binding modules.
    Široký J; Benians TA; Russell SJ; Bechtold T; Paul Knox J; Blackburn RS
    Carbohydr Polym; 2012 Jun; 89(1):213-21. PubMed ID: 24750626
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of Four Types of Chemical Pretreatment on Enzymatic Hydrolysis by SEM, XRD and FTIR Analysis.
    Jin SG; Zhang GM; Zhang PY; Zhou JC; Gao YW; Shi JN
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Jun; 36(6):1966-70. PubMed ID: 30053362
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of addition of sodium alginate on bacterial cellulose production by Acetobacter xylinum.
    Zhou LL; Sun DP; Hu LY; Li YW; Yang JZ
    J Ind Microbiol Biotechnol; 2007 Jul; 34(7):483-9. PubMed ID: 17440758
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Grafting of bacterial polyhydroxybutyrate (PHB) onto cellulose via in situ reactive extrusion with dicumyl peroxide.
    Wei L; McDonald AG; Stark NM
    Biomacromolecules; 2015 Mar; 16(3):1040-9. PubMed ID: 25664869
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Isolation of cellulose nanocrystals from different waste bio-mass collating their liquid crystal ordering with morphological exploration.
    Verma C; Chhajed M; Gupta P; Roy S; Maji PK
    Int J Biol Macromol; 2021 Apr; 175():242-253. PubMed ID: 33561456
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Recent Progress in Fourier Transform Infrared (FTIR) Spectroscopy Study of Compositional, Structural and Physical Attributes of Developmental Cotton Fibers.
    Liu Y
    Materials (Basel); 2013 Jan; 6(1):299-313. PubMed ID: 28809310
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Surface esterification of cellulose nanofibers by a simple organocatalytic methodology.
    Ávila Ramírez JA; Suriano CJ; Cerrutti P; Foresti ML
    Carbohydr Polym; 2014 Dec; 114():416-423. PubMed ID: 25263909
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Preparation of nanocellulose from micro-crystalline cellulose: The effect on the performance and properties of agar-based composite films.
    Shankar S; Rhim JW
    Carbohydr Polym; 2016 Jan; 135():18-26. PubMed ID: 26453846
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Extraction and characterization of cellulose nanofibers from Rose stems (Rosa spp.).
    Ventura-Cruz S; Tecante A
    Carbohydr Polym; 2019 Sep; 220():53-59. PubMed ID: 31196550
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Bacterial cellulose production from the litchi extract by Gluconacetobacter xylinus.
    Yang XY; Huang C; Guo HJ; Xiong L; Luo J; Wang B; Lin XQ; Chen XF; Chen XD
    Prep Biochem Biotechnol; 2016; 46(1):39-43. PubMed ID: 25181328
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Isolation and characterization of microcrystalline cellulose from roselle fibers.
    Kian LK; Jawaid M; Ariffin H; Alothman OY
    Int J Biol Macromol; 2017 Oct; 103():931-940. PubMed ID: 28549863
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Preparation of microcrystalline cellulose from residual Rose stems (Rosa spp.) by successive delignification with alkaline hydrogen peroxide.
    Ventura-Cruz S; Flores-Alamo N; Tecante A
    Int J Biol Macromol; 2020 Jul; 155():324-329. PubMed ID: 32234444
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of silicone oil heat treatment on the chemical composition, cellulose crystalline structure and contact angle of Chinese parasol wood.
    Okon KE; Lin F; Chen Y; Huang B
    Carbohydr Polym; 2017 May; 164():179-185. PubMed ID: 28325315
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biodegradability of Poly-3-hydroxybutyrate/Bacterial Cellulose Composites under Aerobic Conditions, Measured via Evolution of Carbon Dioxide and Spectroscopic and Diffraction Methods.
    Ruka DR; Sangwan P; Garvey CJ; Simon GP; Dean KM
    Environ Sci Technol; 2015 Aug; 49(16):9979-86. PubMed ID: 25763925
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Screening of the common culture conditions affecting crystallinity of bacterial cellulose.
    Zeng X; Liu J; Chen J; Wang Q; Li Z; Wang H
    J Ind Microbiol Biotechnol; 2011 Dec; 38(12):1993-9. PubMed ID: 21630052
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.