These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

395 related articles for article (PubMed ID: 36501708)

  • 1. High Multi-Environmental Mechanical Stability and Adhesive Transparent Ionic Conductive Hydrogels Used as Smart Wearable Devices.
    Wu Y; Liu J; Chen Z; Chen Y; Chen W; Li H; Liu H
    Polymers (Basel); 2022 Dec; 14(23):. PubMed ID: 36501708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Waterborne Polyurethane Enhanced, Adhesive, and Ionic Conductive Hydrogel for Multifunctional Sensors.
    Li X; Zhang E; Shi J; Xiong X; Lin J; Zhang Q; Cui X; Tan L; Wu K
    Macromol Rapid Commun; 2021 Nov; 42(22):e2100457. PubMed ID: 34647394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multifunctional conductive hydrogels and their applications as smart wearable devices.
    Chen Z; Chen Y; Hedenqvist MS; Chen C; Cai C; Li H; Liu H; Fu J
    J Mater Chem B; 2021 Mar; 9(11):2561-2583. PubMed ID: 33599653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cold-resistant, highly stretchable ionic conductive hydrogels for intelligent motion recognition in winter sports.
    Lei T; Pan J; Wang N; Xia Z; Zhang Q; Fan J; Tao L; Shou W; Gao Y
    Mater Horiz; 2024 Mar; 11(5):1234-1250. PubMed ID: 38131412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mussel-inspired adhesive and conductive hydrogel with tunable mechanical properties for wearable strain sensors.
    Zhang X; Chen J; He J; Bai Y; Zeng H
    J Colloid Interface Sci; 2021 Mar; 585():420-432. PubMed ID: 33268058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual-Stimuli-Responsive and Anti-Freezing Conductive Ionic Hydrogels for Smart Wearable Devices and Optical Display Devices.
    Lei D; Xiao Y; Shao L; Xi M; Jiang Y; Li Y
    ACS Appl Mater Interfaces; 2023 May; 15(20):24175-24185. PubMed ID: 37186879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-temperature strain-sensitive sensor based on cellulose-based ionic conductive hydrogels with moldable and self-healing properties.
    Chen M; Quan Q; You Z; Dong Y; Zhou X
    Int J Biol Macromol; 2023 Dec; 253(Pt 6):127396. PubMed ID: 37827399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sodium carboxymethyl cellulose and MXene reinforced multifunctional conductive hydrogels for multimodal sensors and flexible supercapacitors.
    Yin H; Liu F; Abdiryim T; Chen J; Liu X
    Carbohydr Polym; 2024 Mar; 327():121677. PubMed ID: 38171688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using chitosan nanofibers to simultaneously improve the toughness and sensing performance of chitosan-based ionic conductive hydrogels.
    Wang X; Wang B; Liu W; Yu D; Song Z; Li G; Liu X; Wang H; Ge S
    Int J Biol Macromol; 2024 Mar; 260(Pt 1):129272. PubMed ID: 38211925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-Healing, Self-Adhesive Silk Fibroin Conductive Hydrogel as a Flexible Strain Sensor.
    Zheng H; Lin N; He Y; Zuo B
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):40013-40031. PubMed ID: 34375080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multifunctional sodium lignosulfonate/xanthan gum/sodium alginate/polyacrylamide ionic hydrogels composite as a high-performance wearable strain sensor.
    Zhang M; Ren J; Li R; Zhang W; Li Y; Yang W
    Int J Biol Macromol; 2024 Mar; 261(Pt 2):129718. PubMed ID: 38296129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A high-conductive, anti-freezing, antibacterial and anti-swelling starch-based physical hydrogel for multifunctional flexible wearable sensors.
    Lu L; Huang Z; Li X; Li X; Cui B; Yuan C; Guo L; Liu P; Dai Q
    Int J Biol Macromol; 2022 Jul; 213():791-803. PubMed ID: 35679959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel Uracil-Functionalized Poly(ionic liquid) Hydrogel: Highly Stretchable and Sensitive as a Direct Wearable Ionic Skin for Human Motion Detection.
    Fu D; Huang G; Xie Y; Zheng M; Feng J; Kan K; Shen J
    ACS Appl Mater Interfaces; 2023 Mar; 15(8):11062-11075. PubMed ID: 36787995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly conductive and anti-freezing cellulose hydrogel for flexible sensors.
    Shu L; Wang Z; Zhang XF; Yao J
    Int J Biol Macromol; 2023 Mar; 230():123425. PubMed ID: 36706872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Adhesive, Stretchable, and Antifreezing Hydrogel with Excellent Mechanical Properties for Sensitive Motion Sensors and Temperature-/Humidity-Driven Actuators.
    He Z; Zhou Z; Yuan W
    ACS Appl Mater Interfaces; 2022 Aug; 14(33):38205-38215. PubMed ID: 35952384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ionic conductive hydroxypropyl methyl cellulose reinforced hydrogels with extreme stretchability, self-adhesion and anti-freezing ability for highly sensitive skin-like sensors.
    Qin Z; Liu S; Bai J; Yin J; Li N; Jiao T
    Int J Biol Macromol; 2022 Nov; 220():90-96. PubMed ID: 35970366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strong, conductive, and freezing-tolerant polyacrylamide/PEDOT:PSS/cellulose nanofibrils hydrogels for wearable strain sensors.
    Zhang M; Wang Y; Liu K; Liu Y; Xu T; Du H; Si C
    Carbohydr Polym; 2023 Apr; 305():120567. PubMed ID: 36737205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Strength, Self-Adhesive, and Strain-Sensitive Chitosan/Poly(acrylic acid) Double-Network Nanocomposite Hydrogels Fabricated by Salt-Soaking Strategy for Flexible Sensors.
    Cui C; Shao C; Meng L; Yang J
    ACS Appl Mater Interfaces; 2019 Oct; 11(42):39228-39237. PubMed ID: 31550132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly Stretchable, Self-Adhesive, Antidrying Ionic Conductive Organohydrogels for Strain Sensors.
    Huang X; Wang C; Yang L; Ao X
    Molecules; 2023 Mar; 28(6):. PubMed ID: 36985790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stretchable, freezing-tolerant conductive hydrogel for wearable electronics reinforced by cellulose nanocrystals toward multiple hydrogen bonding.
    Wang H; Li Z; Zuo M; Zeng X; Tang X; Sun Y; Lin L
    Carbohydr Polym; 2022 Mar; 280():119018. PubMed ID: 35027123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.