These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 36501847)

  • 21. [Study on application of multi-spectral image texture to discriminating rice categories based on wavelet packet and support vector machine].
    Chen XJ; Wu D; He Y; Liu S
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Jan; 29(1):222-5. PubMed ID: 19385244
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bearing Fault Feature Extraction and Fault Diagnosis Method Based on Feature Fusion.
    Zhu H; He Z; Wei J; Wang J; Zhou H
    Sensors (Basel); 2021 Apr; 21(7):. PubMed ID: 33916563
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multiclass EEG signal classification utilizing Rényi min-entropy-based feature selection from wavelet packet transformation.
    Rahman MA; Khanam F; Ahmad M; Uddin MS
    Brain Inform; 2020 Jun; 7(1):7. PubMed ID: 32548772
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Heartbeat Detection by Laser Doppler Vibrometry and Machine Learning.
    Antognoli L; Moccia S; Migliorelli L; Casaccia S; Scalise L; Frontoni E
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32962134
    [No Abstract]   [Full Text] [Related]  

  • 25. A Novel Characteristic Frequency Bands Extraction Method for Automatic Bearing Fault Diagnosis Based on Hilbert Huang Transform.
    Yu X; Ding E; Chen C; Liu X; Li L
    Sensors (Basel); 2015 Nov; 15(11):27869-93. PubMed ID: 26540059
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Classification of electrocardiogram signals with waveform morphological analysis and support vector machines.
    Li H; An Z; Zuo S; Zhu W; Cao L; Mu Y; Song W; Mao Q; Zhang Z; Li E; García JDP
    Med Biol Eng Comput; 2022 Jan; 60(1):109-119. PubMed ID: 34718933
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An evolutionary machine learning for pulmonary hypertension animal model from arterial blood gas analysis.
    Shi B; Zhou T; Lv S; Wang M; Chen S; Heidari AA; Huang X; Chen H; Wang L; Wu P
    Comput Biol Med; 2022 Jul; 146():105529. PubMed ID: 35594682
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Detection of k-complexes in EEG signals using a multi-domain feature extraction coupled with a least square support vector machine classifier.
    Al-Salman W; Li Y; Wen P
    Neurosci Res; 2021 Nov; 172():26-40. PubMed ID: 33965451
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Automatic classification methods for detecting drowsiness using wavelet packet transform extracted time-domain features from single-channel EEG signal.
    B VP; Chinara S
    J Neurosci Methods; 2021 Jan; 347():108927. PubMed ID: 32941920
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Combining Multi-Scale Wavelet Entropy and Kernelized Classification for Bearing Multi-Fault Diagnosis.
    Rodriguez N; Alvarez P; Barba L; Cabrera-Guerrero G
    Entropy (Basel); 2019 Feb; 21(2):. PubMed ID: 33266868
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electroencephalogram Signal Classification for Automated Epileptic Seizure Detection Using Genetic Algorithm.
    Nanthini BS; Santhi B
    J Nat Sci Biol Med; 2017; 8(2):159-166. PubMed ID: 28781480
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pathological brain detection in MRI scanning by wavelet packet Tsallis entropy and fuzzy support vector machine.
    Zhang YD; Wang SH; Yang XJ; Dong ZC; Liu G; Phillips P; Yuan TF
    Springerplus; 2015; 4(1):716. PubMed ID: 26636004
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computer-assisted lip diagnosis on Traditional Chinese Medicine using multi-class support vector machines.
    Li F; Zhao C; Xia Z; Wang Y; Zhou X; Li GZ
    BMC Complement Altern Med; 2012 Aug; 12():127. PubMed ID: 22898352
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Objective Auscultation of TCM Based on Wavelet Packet Fractal Dimension and Support Vector Machine.
    Yan JJ; Guo R; Wang YQ; Liu GP; Yan HX; Xia CM; Shen X
    Evid Based Complement Alternat Med; 2014; 2014():502348. PubMed ID: 24883068
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantitative Identification of Internal and External Wire Rope Damage Based on VMD-AWT Noise Reduction and PSO-SVM.
    Tian J; Li P; Wang W; Ma J; Sun G; Wang H
    Entropy (Basel); 2022 Jul; 24(7):. PubMed ID: 35885203
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Classification of multi-class motor imagery with a novel hierarchical SVM algorithm for brain-computer interfaces.
    Dong E; Li C; Li L; Du S; Belkacem AN; Chen C
    Med Biol Eng Comput; 2017 Oct; 55(10):1809-1818. PubMed ID: 28238175
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Seismic target classification using a wavelet packet manifold in unattended ground sensors systems.
    Huang J; Zhou Q; Zhang X; Song E; Li B; Yuan X
    Sensors (Basel); 2013 Jul; 13(7):8534-50. PubMed ID: 23881125
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Classification of the mechanomyogram signal using a wavelet packet transform and singular value decomposition for multifunction prosthesis control.
    Xie HB; Zheng YP; Guo JY
    Physiol Meas; 2009 May; 30(5):441-57. PubMed ID: 19349648
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Classification of red blood cell aggregation using empirical wavelet transform analysis of ultrasonic radiofrequency echo signals.
    Liao Z; Zhang Y; Li Z; He B; Lang X; Liang H; Chen J
    Ultrasonics; 2021 Jul; 114():106419. PubMed ID: 33740499
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Automatic Epileptic Electroencephalogram Detection during Normal,Interictal and Ictal Periods Combining Feature Extraction Based on Sample Entropy and Wavelet Packet Energy with Real AdaBoost Algorithm].
    Zhang J; Jiang W; Ben X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Dec; 33(6):1031-8. PubMed ID: 29714964
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.