These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 36501866)

  • 1. Velocity Prediction of a Pipeline Inspection Gauge (PIG) with Machine Learning.
    Freitas VCG; Araujo VG; Crisóstomo DCC; Lima GF; Neto ADD; Salazar AO
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pipeline Inspection Gauge's Velocity Simulation Based on Pressure Differential Using Artificial Neural Networks.
    de Araújo RP; de Freitas VCG; de Lima GF; Salazar AO; Neto ADD; Maitelli AL
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30216994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PIG's Speed Estimated with Pressure Transducers and Hall Effect Sensor: An Industrial Application of Sensors to Validate a Testing Laboratory.
    Lima GF; Freitas VCG; Araújo RP; Maitelli AL; Salazar AO
    Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28914757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compensation Method for Pipeline Centerline Measurement of in-Line Inspection during Odometer Slips Based on Multi-Sensor Fusion and LSTM Network.
    Liu S; Zheng D; Li R
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31470577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Real-Time, Non-Contact Method for In-Line Inspection of Oil and Gas Pipelines Using Optical Sensor Array.
    Sampath S; Bhattacharya B; Aryan P; Sohn H
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31434253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Attention Module Magnetic Flux Leakage Linked Deep Residual Network for Pipeline In-Line Inspection.
    Liu S; Wang H; Li R
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. VTag: a semi-supervised pipeline for tracking pig activity with a single top-view camera.
    Chen CJ; Morota G; Lee K; Zhang Z; Cheng H
    J Anim Sci; 2022 Jun; 100(6):. PubMed ID: 35486674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pipeline In-Line Inspection Method, Instrumentation and Data Management.
    Ma Q; Tian G; Zeng Y; Li R; Song H; Wang Z; Gao B; Zeng K
    Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34205033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Comprehensive Review of Micro-Inertial Measurement Unit Based Intelligent PIG Multi-Sensor Fusion Technologies for Small-Diameter Pipeline Surveying.
    Guan L; Cong X; Zhang Q; Liu F; Gao Y; An W; Noureldin A
    Micromachines (Basel); 2020 Sep; 11(9):. PubMed ID: 32906816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Combined Semi-Supervised Deep Learning Method for Oil Leak Detection in Pipelines Using IIoT at the Edge.
    Spandonidis C; Theodoropoulos P; Giannopoulos F
    Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sampling methods and feature selection for mortality prediction with neural networks.
    Steinmeyer C; Wiese L
    J Biomed Inform; 2020 Nov; 111():103580. PubMed ID: 33031938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of Vehicle Longitudinal Velocity with Artificial Neural Network.
    Napolitano Dell'Annunziata G; Arricale VM; Farroni F; Genovese A; Pasquino N; Tranquillo G
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation of sand particles detection inside a pipeline by photon radiography.
    Jamshidi V
    Appl Radiat Isot; 2023 Sep; 199():110876. PubMed ID: 37302299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Novel Method to Enhance Pipeline Trajectory Determination Using Pipeline Junctions.
    Sahli H; El-Sheimy N
    Sensors (Basel); 2016 Apr; 16(4):. PubMed ID: 27110780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Granger causality test with nonlinear neural-network-based methods: Python package and simulation study.
    Rosoł M; Młyńczak M; Cybulski G
    Comput Methods Programs Biomed; 2022 Apr; 216():106669. PubMed ID: 35151111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel neural network-based framework to estimate oil and gas pipelines life with missing input parameters.
    Shaik NB; Jongkittinarukorn K; Benjapolakul W; Bingi K
    Sci Rep; 2024 Feb; 14(1):4511. PubMed ID: 38402261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Sensitivity Real-Time Tracking System for High-Speed Pipeline Inspection Gauge.
    Piao G; Guo J; Hu T; Deng Y
    Sensors (Basel); 2019 Feb; 19(3):. PubMed ID: 30754697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Simultaneous Pipe-Attribute and PIG-Pose Estimation (SPPE) Using 3-D Point Cloud in Compressible Gas Pipelines.
    Nguyen HH; Park JH; Jeong HY
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and Validation of an Articulated Sensor Carrier to Improve the Automatic Pipeline Inspection.
    Ramirez-Martinez A; Rodríguez-Olivares NA; Torres-Torres S; Ronquillo-Lomelí G; Soto-Cajiga JA
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30901871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prognostics of unsupported railway sleepers and their severity diagnostics using machine learning.
    Sresakoolchai J; Kaewunruen S
    Sci Rep; 2022 Apr; 12(1):6064. PubMed ID: 35411031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.