These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 36501923)

  • 1. Indoor 3D Reconstruction of Buildings via Azure Kinect RGB-D Camera.
    Delasse C; Lafkiri H; Hajji R; Rached I; Landes T
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-Dimensional Reconstruction Method of Rapeseed Plants in the Whole Growth Period Using RGB-D Camera.
    Teng X; Zhou G; Wu Y; Huang C; Dong W; Xu S
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the Azure Kinect and Its Comparison to Kinect V1 and Kinect V2.
    Tölgyessy M; Dekan M; Chovanec Ľ; Hubinský P
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33430149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microsoft Azure Kinect Calibration for Three-Dimensional Dense Point Clouds and Reliable Skeletons.
    Romeo L; Marani R; Perri AG; D'Orazio T
    Sensors (Basel); 2022 Jul; 22(13):. PubMed ID: 35808479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating the Accuracy of the Azure Kinect and Kinect v2.
    Kurillo G; Hemingway E; Cheng ML; Cheng L
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D object detection through fog and occlusion: passive integral imaging vs active (LiDAR) sensing.
    Usmani K; O'Connor T; Wani P; Javidi B
    Opt Express; 2023 Jan; 31(1):479-491. PubMed ID: 36606982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the Pose Tracking Performance of the Azure Kinect and Kinect v2 for Gait Analysis in Comparison with a Gold Standard: A Pilot Study.
    Albert JA; Owolabi V; Gebel A; Brahms CM; Granacher U; Arnrich B
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32911651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Indoor Scene Point Cloud Registration Algorithm Based on RGB-D Camera Calibration.
    Tsai CY; Huang CH
    Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28809787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating Automatic Body Orientation Detection for Indoor Location from Skeleton Tracking Data to Detect Socially Occupied Spaces Using the Kinect v2, Azure Kinect and Zed 2i.
    Sosa-León VAL; Schwering A
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D object reconstruction: A comprehensive view-dependent dataset.
    Staszak R; Belter D
    Data Brief; 2024 Aug; 55():110569. PubMed ID: 38966660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatio-Temporal Calibration of Multiple Kinect Cameras Using 3D Human Pose.
    Eichler N; Hel-Or H; Shimshoni I
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced RGB-D Mapping Method for Detailed 3D Indoor and Outdoor Modeling.
    Tang S; Zhu Q; Chen W; Darwish W; Wu B; Hu H; Chen M
    Sensors (Basel); 2016 Sep; 16(10):. PubMed ID: 27690028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How the Processing Mode Influences Azure Kinect Body Tracking Results.
    Büker L; Quinten V; Hackbarth M; Hellmers S; Diekmann R; Hein A
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust and Efficient CPU-Based RGB-D Scene Reconstruction.
    Li J; Gao W; Li H; Tang F; Wu Y
    Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30373281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Postural control assessment via Microsoft Azure Kinect DK: An evaluation study.
    Antico M; Balletti N; Laudato G; Lazich A; Notarantonio M; Oliveto R; Ricciardi S; Scalabrino S; Simeone J
    Comput Methods Programs Biomed; 2021 Sep; 209():106324. PubMed ID: 34375852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A New Model of RGB-D Camera Calibration Based On 3D Control Field.
    Zhang C; Huang T; Zhao Q
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31766347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast reconstruction method of three-dimension model based on dual RGB-D cameras for peanut plant.
    Liu Y; Yuan H; Zhao X; Fan C; Cheng M
    Plant Methods; 2023 Feb; 19(1):17. PubMed ID: 36843020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Fast and Robust Extrinsic Calibration for RGB-D Camera Networks.
    Su PC; Shen J; Xu W; Cheung SS; Luo Y
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29342968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accuracy of RGB-D camera-based and stereophotogrammetric facial scanners: a comparative study.
    Pan F; Liu J; Cen Y; Chen Y; Cai R; Zhao Z; Liao W; Wang J
    J Dent; 2022 Dec; 127():104302. PubMed ID: 36152954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A contactless method to measure real-time finger motion using depth-based pose estimation.
    Zhu Y; Lu W; Gan W; Hou W
    Comput Biol Med; 2021 Apr; 131():104282. PubMed ID: 33631496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.