These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 36501943)

  • 1. OCTUNE: Optimal Control Tuning Using Real-Time Data with Algorithm and Experimental Results.
    Abdelkader M; Mabrok M; Koubaa A
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Online Tuning of PID Controller Using a Multilayer Fuzzy Neural Network Design for Quadcopter Attitude Tracking Control.
    Park D; Le TL; Quynh NV; Long NK; Hong SK
    Front Neurorobot; 2020; 14():619350. PubMed ID: 33536891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New tuning method for PID controller.
    Shen JC
    ISA Trans; 2002 Oct; 41(4):473-84. PubMed ID: 12398278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single Neural Adaptive PID Control for Small UAV Micro-Turbojet Engine.
    Tang W; Wang L; Gu J; Gu Y
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31936223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel Fuzzy PID-Type Iterative Learning Control for Quadrotor UAV.
    Dong J; He B
    Sensors (Basel); 2018 Dec; 19(1):. PubMed ID: 30577657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disturbance-rejection-based tuning of proportional-integral-derivative controllers by exploiting closed-loop plant data.
    Jeng JC; Ge GP
    ISA Trans; 2016 May; 62():312-24. PubMed ID: 26922494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural Network-Based Self-Tuning PID Control for Underwater Vehicles.
    Hernández-Alvarado R; García-Valdovinos LG; Salgado-Jiménez T; Gómez-Espinosa A; Fonseca-Navarro F
    Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27608018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Auto-tuning of PID controller parameters with supervised receding horizon optimization.
    Xu M; Li S; Qi C; Cai W
    ISA Trans; 2005 Oct; 44(4):491-500. PubMed ID: 16294776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-Time Model-Free Minimum-Seeking Autotuning Method for Unmanned Aerial Vehicle Controllers Based on Fibonacci-Search Algorithm.
    Giernacki W; Horla D; Báča T; Saska M
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30646579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive tracking control of an unmanned aerial system based on a dynamic neural-fuzzy disturbance estimator.
    Cervantes-Rojas JS; Muñoz F; Chairez I; González-Hernández I; Salazar S
    ISA Trans; 2020 Jun; 101():309-326. PubMed ID: 32143852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robust PID control of quadrotors with power reduction analysis.
    Miranda-Colorado R; Aguilar LT
    ISA Trans; 2020 Mar; 98():47-62. PubMed ID: 31506163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fuzzy Gain-Scheduling PID for UAV Position and Altitude Controllers.
    Melo AG; Andrade FAA; Guedes IP; Carvalho GF; Zachi ARL; Pinto MF
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Particle Swarm Optimization aided PID gait controller design for a humanoid robot.
    Kashyap AK; Parhi DR
    ISA Trans; 2021 Aug; 114():306-330. PubMed ID: 33358185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reinforcement learning based proportional-integral-derivative controllers design for consensus of multi-agent systems.
    Li J; Wang J
    ISA Trans; 2023 Jan; 132():377-386. PubMed ID: 35787930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quadcopter UAVs Extended States/Disturbance Observer-Based Nonlinear Robust Backstepping Control.
    Thanh HLNN; Huynh TT; Vu MT; Mung NX; Phi NN; Hong SK; Vu TNL
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapidly Tuning the PID Controller Based on the Regional Surrogate Model Technique in the UAV Formation.
    Wang B; Duan X; Yan L; Deng J; Chen J
    Entropy (Basel); 2020 May; 22(5):. PubMed ID: 33286299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metaheuristic algorithms for PID controller parameters tuning: review, approaches and open problems.
    Joseph SB; Dada EG; Abidemi A; Oyewola DO; Khammas BM
    Heliyon; 2022 May; 8(5):e09399. PubMed ID: 35600459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intelligent tuning method of PID parameters based on iterative learning control for atomic force microscopy.
    Liu H; Li Y; Zhang Y; Chen Y; Song Z; Wang Z; Zhang S; Qian J
    Micron; 2018 Jan; 104():26-36. PubMed ID: 29054026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. UAV Autonomous Tracking and Landing Based on Deep Reinforcement Learning Strategy.
    Xie J; Peng X; Wang H; Niu W; Zheng X
    Sensors (Basel); 2020 Oct; 20(19):. PubMed ID: 33019747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Artificial Fuzzy-PID Gain Scheduling Algorithm Design for Motion Control in Differential Drive Mobile Robotic Platforms.
    Yousfi Allagui N; Salem FA; Aljuaid AM
    Comput Intell Neurosci; 2021; 2021():5542888. PubMed ID: 34707650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.