These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Gait Subphases Classification Based on Hidden Markov Models using in-shoes Capacitive Pressure Sensors: Preliminary Results. Osorio R; Pastene F; Ortega P; Aqueveque P Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():756-759. PubMed ID: 36086030 [TBL] [Abstract][Full Text] [Related]
24. Flexible sensor matrix film-based wearable plantar pressure force measurement and analysis system. Zhao S; Liu R; Fei C; Zia AW; Jing L PLoS One; 2020; 15(8):e0237090. PubMed ID: 32764796 [TBL] [Abstract][Full Text] [Related]
25. Foot center of pressure trajectory alteration by biomechanical manipulation of shoe design. Khoury M; Wolf A; Debbi EM; Herman A; Haim A Foot Ankle Int; 2013 Apr; 34(4):593-8. PubMed ID: 23449662 [TBL] [Abstract][Full Text] [Related]
26. Gait characteristics during crossing over obstacle in patients with glaucoma using insole foot pressure. Lee HS; Lee KJ; Kim JL; Leem HS; Shin HJ; Kwon HG Medicine (Baltimore); 2021 Aug; 100(32):e26938. PubMed ID: 34397944 [TBL] [Abstract][Full Text] [Related]
27. Biomechanical effects of rocker shoes on plantar aponeurosis strain in patients with plantar fasciitis and healthy controls. Greve C; Schuitema D; Otten B; van Kouwenhove L; Verhaar E; Postema K; Dekker R; Hijmans JM PLoS One; 2019; 14(10):e0222388. PubMed ID: 31600227 [TBL] [Abstract][Full Text] [Related]
28. Development of a Self-Powered Piezo-Resistive Smart Insole Equipped with Low-Power BLE Connectivity for Remote Gait Monitoring. de Fazio R; Perrone E; Velázquez R; De Vittorio M; Visconti P Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283073 [TBL] [Abstract][Full Text] [Related]
29. Estimation of ground reaction forces and ankle moment with multiple, low-cost sensors. Jacobs DA; Ferris DP J Neuroeng Rehabil; 2015 Oct; 12():90. PubMed ID: 26467753 [TBL] [Abstract][Full Text] [Related]
30. Calibrating Low-Cost Smart Insole Sensors with Recurrent Neural Networks for Accurate Prediction of Center of Pressure. Choi HS; Yoon S; Kim J; Seo H; Choi JK Sensors (Basel); 2024 Jul; 24(15):. PubMed ID: 39123811 [TBL] [Abstract][Full Text] [Related]
31. Effects of heel base size, walking speed, and slope angle on center of pressure trajectory and plantar pressure when wearing high-heeled shoes. Luximon Y; Cong Y; Luximon A; Zhang M Hum Mov Sci; 2015 Jun; 41():307-19. PubMed ID: 25910862 [TBL] [Abstract][Full Text] [Related]
32. A shoe-insole to improve ankle joint mechanics for injury prevention among older adults. Nagano H; Begg R Ergonomics; 2021 Oct; 64(10):1271-1280. PubMed ID: 33896396 [TBL] [Abstract][Full Text] [Related]
33. Insole-Based Systems for Health Monitoring: Current Solutions and Research Challenges. Subramaniam S; Majumder S; Faisal AI; Deen MJ Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062398 [TBL] [Abstract][Full Text] [Related]
34. Design of an Artificial Neural Network Algorithm for a Low-Cost Insole Sensor to Estimate the Ground Reaction Force (GRF) and Calibrate the Center of Pressure (CoP). Choi HS; Lee CH; Shim M; Han JI; Baek YS Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30544652 [TBL] [Abstract][Full Text] [Related]
35. Effectiveness of a lateral-wedge insole on knee varus torque in patients with knee osteoarthritis. Kerrigan DC; Lelas JL; Goggins J; Merriman GJ; Kaplan RJ; Felson DT Arch Phys Med Rehabil; 2002 Jul; 83(7):889-93. PubMed ID: 12098144 [TBL] [Abstract][Full Text] [Related]
36. Immediate and short-term effects of wearing a single textured insole on symmetry of stance and gait in healthy adults. Ma CC; Lee YJ; Chen B; Aruin AS Gait Posture; 2016 Sep; 49():190-195. PubMed ID: 27448047 [TBL] [Abstract][Full Text] [Related]
37. Preliminary Clinical Application of Textile Insole Sensor for Hemiparetic Gait Pattern Analysis. Wang C; Kim Y; Shin H; Min SD Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31547437 [TBL] [Abstract][Full Text] [Related]
38. Age-related plantar centre of pressure trajectory changes during barefoot walking. Sole G; Pataky T; Sole CC; Hale L; Milosavljevic S Gait Posture; 2017 Sep; 57():188-192. PubMed ID: 28654792 [TBL] [Abstract][Full Text] [Related]
39. Gait Segmentation Method Using a Plantar Pressure Measurement System with Custom-Made Capacitive Sensors. Aqueveque P; Germany E; Osorio R; Pastene F Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 31991637 [TBL] [Abstract][Full Text] [Related]
40. Evaluation and Application of a Customizable Wireless Platform: A Body Sensor Network for Unobtrusive Gait Analysis in Everyday Life. Lueken M; Mueller L; Decker MG; Bollheimer C; Leonhardt S; Ngo C Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33419278 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]