These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 36502092)
41. Soft-Material-Based Smart Insoles for a Gait Monitoring System. Wang C; Kim Y; Min SD Materials (Basel); 2018 Nov; 11(12):. PubMed ID: 30513646 [TBL] [Abstract][Full Text] [Related]
42. The Influence of Walking Height and Width on the Gait. Ma H; Min Y; Wu F; Gao X; Ma X; Yao J; Ma C; Li X J Healthc Eng; 2021; 2021():6675809. PubMed ID: 34257853 [TBL] [Abstract][Full Text] [Related]
43. Neuromuscular response to the stimulation of plantar cutaneous during walking at different speeds. Palazzo F; Lamouchideli N; Caronti A; Tufi F; Padua E; Annino G Gait Posture; 2022 Jun; 95():84-92. PubMed ID: 35462053 [TBL] [Abstract][Full Text] [Related]
44. Insoles of uniform softer material reduced plantar pressure compared to dual-material insoles during regular and loaded gait. Melia G; Siegkas P; Levick J; Apps C Appl Ergon; 2021 Feb; 91():103298. PubMed ID: 33157384 [TBL] [Abstract][Full Text] [Related]
45. A Novel Tool for Gait Analysis: Validation Study of the Smart Insole PODOSmart Ziagkas E; Loukovitis A; Zekakos DX; Chau TD; Petrelis A; Grouios G Sensors (Basel); 2021 Sep; 21(17):. PubMed ID: 34502861 [TBL] [Abstract][Full Text] [Related]
46. Investigation of Impact of Walking Speed on Forces Acting on a Foot-Ground Unit. Jasiewicz B; Klimiec E; Guzdek P; Kołaszczyński G; Piekarski J; Zaraska K; Potaczek T Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35459082 [TBL] [Abstract][Full Text] [Related]
47. Gait Pattern Analysis: Integration of a Highly Sensitive Flexible Pressure Sensor on a Wireless Instrumented Insole. Das PS; Skaf D; Rose L; Motaghedi F; Carmichael TB; Rondeau-Gagné S; Ahamed MJ Sensors (Basel); 2024 May; 24(9):. PubMed ID: 38733050 [TBL] [Abstract][Full Text] [Related]
48. Stiffness Effects in Rocker-Soled Shoes: Biomechanical Implications. Lin SY; Su PF; Chung CH; Hsia CC; Chang CH PLoS One; 2017; 12(1):e0169151. PubMed ID: 28046009 [TBL] [Abstract][Full Text] [Related]
49. Pressure-Sensitive Insoles for Real-Time Gait-Related Applications. Martini E; Fiumalbi T; Dell'Agnello F; Ivanić Z; Munih M; Vitiello N; Crea S Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32155828 [TBL] [Abstract][Full Text] [Related]
50. Three-dimensional GRF and CoP Estimation during Stair and Slope Ascent/Descent with Wearable IMUs and Foot Pressure Sensors. Fukushi K; Sekiguchi Y; Honda K; Yaguchi H; Izumi SI Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6401-6404. PubMed ID: 31947307 [TBL] [Abstract][Full Text] [Related]
51. A wearable ground reaction force sensor system and its application to the measurement of extrinsic gait variability. Liu T; Inoue Y; Shibata K Sensors (Basel); 2010; 10(11):10240-55. PubMed ID: 22163468 [TBL] [Abstract][Full Text] [Related]
52. Quantification of the path of center of pressure (COP) using an F-scan in-shoe transducer. Han TR; Paik NJ; Im MS Gait Posture; 1999 Dec; 10(3):248-54. PubMed ID: 10567757 [TBL] [Abstract][Full Text] [Related]
53. The Effect of Walking Speed on Foot Kinematics is Modified When Increased Pronation is Induced. Hornestam JF; Souza TR; Arantes P; Ocarino J; Silva PL J Am Podiatr Med Assoc; 2016 Nov; 106(6):419-426. PubMed ID: 28033053 [TBL] [Abstract][Full Text] [Related]
54. The configuration of plantar pressure sensing cells for wearable measurement of COP coordinates. Wang D; Cai P; Mao Z Biomed Eng Online; 2016 Oct; 15(1):116. PubMed ID: 27784299 [TBL] [Abstract][Full Text] [Related]
55. Center of pressure trajectory during gait: a comparison of four foot positions. Lugade V; Kaufman K Gait Posture; 2014 Sep; 40(4):719-22. PubMed ID: 25052586 [TBL] [Abstract][Full Text] [Related]
56. IoT-Based Wireless System for Gait Kinetics Monitoring in Multi-Device Therapeutic Interventions. Rathke CL; Pimentel VCA; Alsina PJ; do Espírito Santo CC; Dantas AFOA Sensors (Basel); 2024 Sep; 24(17):. PubMed ID: 39275710 [TBL] [Abstract][Full Text] [Related]
57. A proof-of-concept study for measuring gait speed, steadiness, and dynamic balance under various footwear conditions outside of the gait laboratory. Wrobel JS; Edgar S; Cozzetto D; Maskill J; Peterson P; Najafi B J Am Podiatr Med Assoc; 2010; 100(4):242-50. PubMed ID: 20660874 [TBL] [Abstract][Full Text] [Related]
58. Analysis of dual-task elderly gait using wearable plantar-pressure insoles and accelerometer. Howcroft JD; Lemaire ED; Kofman J; McIlroy WE Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5003-6. PubMed ID: 25571116 [TBL] [Abstract][Full Text] [Related]
59. [Effect of walking speed on pressure distribution of orthopedic shoe technology]. Drerup B; Hafkemeyer U; Möller M; Wetz HH Orthopade; 2001 Mar; 30(3):169-75. PubMed ID: 11501008 [TBL] [Abstract][Full Text] [Related]
60. Do textured insoles affect postural control and spatiotemporal parameters of gait and plantar sensation in people with multiple sclerosis? Kalron A; Pasitselsky D; Greenberg-Abrahami M; Achiron A PM R; 2015 Jan; 7(1):17-25. PubMed ID: 25153447 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]