These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 36502159)

  • 1. Deep Reinforcement Learning Based Resource Allocation for D2D Communications Underlay Cellular Networks.
    Yu S; Lee JW
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Joint Power and Channel Scheduling Scheme for Underlay D2D Communications in the Cellular Network.
    Lin Z; Song H; Pan D
    Sensors (Basel); 2019 Nov; 19(21):. PubMed ID: 31690023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Joint Deep Reinforcement Learning and Unsupervised Learning for Channel Selection and Power Control in D2D Networks.
    Sun M; Jin Y; Wang S; Mei E
    Entropy (Basel); 2022 Nov; 24(12):. PubMed ID: 36554127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Self-Regulating Power-Control Scheme Using Reinforcement Learning for D2D Communication Networks.
    Ban TW
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy-Efficient Resource Allocation Based on Deep Q-Network in V2V Communications.
    Han D; So J
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimal Resource Management and Binary Power Control in Network-Assisted D2D Communications for Higher Frequency Reuse Factor.
    Ningombam DD; Shin S
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30634647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep Deterministic Policy Gradient-Based Resource Allocation Considering Network Slicing and Device-to-Device Communication in Mobile Networks.
    de Souza Lopes HH; Ferreira Lima LJ; de Lima Soares TW; Teles Vieira FH
    Sensors (Basel); 2024 Sep; 24(18):. PubMed ID: 39338825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Deep Learning Approach for Maximum Activity Links in D2D Communications.
    Yu B; Zhang X; Palmieri F; Creignou E; You I
    Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31277349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy-Efficient Power Allocation and Relay Selection Schemes for Relay-Assisted D2D Communications in 5G Wireless Networks.
    Rahman MA; Lee Y; Koo I
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30200253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On Power-Efficient Low-Complexity Adaptation for D2D Resource Allocation with Interference Cancelation.
    Radaydeh RM
    Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fractional Frequency Reuse Scheme for Device to Device Communication Underlaying Cellular on Wireless Multimedia Sensor Networks.
    Kim J; Kim T; Noh J; Cho S
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30104533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Joint Particle Swarm Optimization of Power and Phase Shift for IRS-Aided D2D Underlaying Cellular Systems.
    Wang R; Wen X; Xu F; Ye Z; Cao H; Hu Z; Yuan X
    Sensors (Basel); 2023 Jun; 23(11):. PubMed ID: 37299991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep-Learning-Based Resource Allocation for Time-Sensitive Device-to-Device Networks.
    Zheng Z; Chi Y; Ding G; Yu G
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Interference Mitigation Scheme of Device-to-Device Communications for Sensor Networks Underlying LTE-A.
    Kim J; Karim NA; Cho S
    Sensors (Basel); 2017 May; 17(5):. PubMed ID: 28489064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep Reinforcement Learning-Based Resource Allocation for Cellular Vehicular Network Mode 3 with Underlay Approach.
    Fu J; Qin X; Huang Y; Tang L; Liu Y
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35271024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep Reinforcement Learning for Physical Layer Security Enhancement in Energy Harvesting Based Cognitive Radio Networks.
    Lin R; Qiu H; Jiang W; Jiang Z; Li Z; Wang J
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Power Allocation Scheme for MIMO-NOMA and D2D Vehicular Edge Computing Based on Decentralized DRL.
    Long D; Wu Q; Fan Q; Fan P; Li Z; Fan J
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. D2D-Assisted Multi-User Cooperative Partial Offloading in MEC Based on Deep Reinforcement Learning.
    Guan X; Lv T; Lin Z; Huang P; Zeng J
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-Agent Deep Reinforcement Learning Based Dynamic Task Offloading in a Device-to-Device Mobile-Edge Computing Network to Minimize Average Task Delay with Deadline Constraints.
    He H; Yang X; Mi X; Shen H; Liao X
    Sensors (Basel); 2024 Aug; 24(16):. PubMed ID: 39204838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing secure multimedia communication in embedded systems a parallel convolutional neural network approach to RIS and D2D resource allocation.
    Wang X; Rao S; Zhang L
    Sci Rep; 2024 Oct; 14(1):23660. PubMed ID: 39389998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.